1. Справочный материал.
Понятие матрицы часто используется в практической деятельности, например, данные о выпуске продукции нескольких видов в каждом квартале года или нормы затрат нескольких видов ресурсов на производство продукции нескольких типов и т.д. удобно записывать в виде матрицы.
Задача 1. В некоторой отрасли m заводов выпускают n видов продукции. Матрица
Найти:
а) объёмы продукции;
б) прирост объёмов производства во втором квартале по сравнению с первым по видам продукции и заводам;
в) стоимостное выражение выпущенной продукции за полгода (в долларах), если
Решение:
а) Объёмы продукции за полугодие определяются суммой матриц, т.е. С=А+В=
б) Прирост во втором квартале по сравнению с первым определяется разностью матриц, т.е.
Д=В-А=
в) Произведение λC= λ(А+В) даёт выражение стоимости объёмов производства за квартал в долларах по каждому заводу и каждому предприятию.
Задача 2. Предприятие производит n типов продукции, используя m видов ресурсов. Нормы затрат ресурса i-го товара на производство единицы продукции j-го типа заданы матрицей затрат
Определить S – матрицу полных затрат ресурсов каждого вида на производство всей продукции за данный период времени, если
Задача 3. Завод производит двигатели, которые могут либо сразу потребовать дополнительной регулировки (в 40% случаев), либо сразу могут быть использованы (в 60% случаев). Как показывают статистические исследования, те двигатели, которые изначально требовали регулировки, потребуют дополнительной регулировки через месяц в 65% случаев, а в 35% случаев через месяц будут работать хорошо. Те же двигатели, которые не требовали первоначальной регулировки, потребуют её через месяц в 20% случаев и продолжат хорошо работать в 80% случаев. Какова доля двигателей, которые будут работать хорошо или потребуют регулировки через 2 месяца после выпуска? Через 3 месяца?
Решение.
В момент после выпуска доля хороших двигателей составляет 0,6, а доля требующих регулировки – 0,4. Через месяц доля хороших составит: 0,6.0,8+0,4.0,35=0,62. Доля требующих регулировки: 0,6.0,2+0,4.0,65=0,38. введём строку состояния Xt в момент t; Xt=(x1t; x2t), где x1t – доля хороших двигателей, x2t – доля двигателей, требующих регулировки в момент t.
Матрица перехода
Очевидно, что для матрицы перехода сумма элементов каждой строки равна 1, все элементы неотрицательны.
Очевидно,
Тогда через месяц
через 2 месяца
Найдём матрицы
Отметим, что если
Очевидно,
Задача 3. Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн. усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: а) в минувшем году; б) в текущем году?
Решение.
Пусть
2. Задания для самостоятельной работы.
2.1. Три завода выпускают четыре вида продукции. Необходимо: а) найти матрицу выпуска продукции за квартал, если заданы матрицы помесячных выпусков А1, А2, А3; б) найти матрицы приростов выпуска продукции за каждый месяц В1 и В2 и проанализировать результаты:
2.2. Предприятие производит мебель трёх видов и продаёт её в четырёх регионах. Матрица
2.3. По условию задачи 2 определить:1) полные затраты ресурсов 3-х видов на производство месячной продукции, если заданы нормы затрат матрицей
2) стоимость всех затраченных ресурсов, если задана стоимость единиц каждого ресурса
2.4. В ремонтную мастерскую поступают телефонные аппараты, 70 % которых требуют малого ремонта, 20 % - среднего ремонта, 10% - сложного ремонта. Статистически установлено, что 10% аппаратов прошедших малый ремонт, через год требуют малого ремонта, 60% - среднего, 30% -сложного ремонта. Из аппаратов, прошедших средний ремонт, 20% требуют через год малого ремонта, 50% - среднего, 30% - сложного ремонта. Из аппаратов, прошедших сложный ремонт, через год 60% требуют малого ремонта, 40% - среднего. Найти доли из отремонтированных в начале года аппаратов, которые будут требовать ремонта того или иного вида: через 1 год; 2 года;3 года.
Практическое занятие.
Тема. Методы математического анализа для построения моделей СЭП.
Цель. Решение экономических задач с элементами моделирования, в которых применяются методы математического анализа.