Содержание
Введение
Глава 1. Неравенство Маркова на индексационных классах
§ 1. Экстремальная задача
§ 2. Свойства отображения
§ 3. Доказательство теоремы
Глава 2. О чебышевской экстремальной задаче на [0, ¥)
Литература
Введение
В работе вводится понятие индекса функции на [0,¥) относительно произвольного класса F функций на [0, ¥), основанное на сравнении двух функций через количество перемен знака их разности. С помощью понятия индекса аксиоматически определяется индексационный класс F. На индексационных классах изучается конечная проблема моментов.
Определение 1. Скажем, что функция D(t), tÎR1, имеет k строгих перемен знака, если существуют множества A1<A2<…<Ak+1, такие, что
а)
б) знаки функции D(t) на множествах A1, A2, …, Ak+1 перемежаются.
Пусть f(t) и g(t) – функции на R1. Пишем
Нетрудно видеть, что отношение
а) не существует точки x1, …, xk (-¥<x1<…<xk<¥) такие, что
(-1)k-i f(xi) > (-1)k-i g(xi),
б) существуют точки y1, …, yk (-¥<y1<…<yk<¥) такие, что
(-1)k-i f(yi) > (-1)k-i g(yi),
Пусть F – некоторый класс непрерывных слева функций на [0, ¥) и f, gÎF.
Определение 2. Пишем
Функция f имеет индекс k- в F, если выполнено отношение
Через Ik- (Ik+), k³1, обозначим совокупность всех функций с индексом k- (k+) в F.
Пусть U – семейство функций на [0, ¥).
Через FU обозначим множество функций fÎF, для которых интегралы
абсолютно сходятся.
В случае
, Fi(A)={Fi(f): fÎA},
Множество
Лемма 1. Пусть системы u1(t), …, un(t) и u1(t), …, un(t), un+1(t) образуют T+-системы на [0, ¥) такие, что
Доказательство. Допустим, что
Так как
то есть
где di(-1)k-i,
Из (1) следует, что detH(
где 0£x1<x2<…<xk<¥. Так как векторы
Так как
где di=(-1)n+1-i,
где H – матрица, записанная в (3) слева,
Определение 3. Скажем, что последовательность {fi}i³1 функций на [0, ¥) относительно класса U слабо сходится к функции f
для всех uÎU.
Определение 4. Множество AÌFU назовем (k, U) окрестностью функции f в F, если fÎA и множество А имеет вид
Множество AÌFU назовем (k, U)-открытым, если каждая функция fÎA имеет (k, U) окрестность, состоящую из функций множества А.
Определение 5. Класс F непрерывных слева, неотрицательных функций на [0, ¥) назовем нижним U-индексационным с дефектом n, если:
1. Класс F равномерно ограничен, то есть существует L>0, такое, что f(t)£L при t³0, fÎF;
2.
3. Множества Ik- (k-1, U) – открыты для всех k>n+1;
4. Из любой последовательности {fi}i³1ÌI-k+1 (k>n) такой, что
можно выделить подпоследовательность, слабо относительно класса U сходящуюся к некоторой функции