Смекни!
smekni.com

Предел последовательности. Теорема Штольца (стр. 2 из 3)

Замечание: согласно определениям (5) и (6), если а – предел последовательности {хп}, то xп – а является элементом бесконечно малой последовательности, т.е. xп – а = αn, где αn – элемент бесконечно малой последовательности. Следовательно, xп = а +αn, и тогда мы в праве утверждать, что если числовая последовательность {хп} сходится, то её всегда можно представить в виде суммы своего предела и элемента бесконечно малой последовательности.

Верно и обратное утверждение: если любой элемент последовательности {хп} можно представить в виде суммы постоянного числа и элемента бесконечно малой последовательности, то это постоянная и есть предел данной последовательности.

Свойства сходящихся последовательностей

Теорема 1:

Всякая сходящаяся последовательность имеет только один предел.

Доказательство:

Предположим, что последовательность {xn} имеет два предела (а ≠ b)

xn → a, следовательно xn = a + αn, где αn элемент бесконечно малой последовательности;

xn → b, следовательно xn = b + βn, где βn элемент бесконечно малой последовательности;

Оценим разность данных равенств 0 = a – b + (αn- βn),

обозначим αn- βn = γn, γn – элемент бесконечно малой последовательности,

следовательно, γn = b – a,

а это означает, что все элементы бесконечно малой последовательности равны одному и тому же числу b – a, и тогда b – a = 0 по свойству бесконечно малой последовательности,

следовательно, b = a,

следовательно, последовательность не может иметь двух различных пределов.

Теорема 2:

Если все элементы последовательности {xn} равны С (постоянной), то предел последовательности {xn}, тоже равен С.

Доказательство:

Из определения предела, следует, С = С + 0.

Теорема 3:

Если последовательности {xn} и {уn} сходятся, то и последовательность {xn+ уn} также сходится и её предел равен сумме её слагаемых (пределов).

Доказательство:

xn → a, следовательно xn = a + αn

уn → b, следовательно уn = b + βn

xn+ уn = а + b + (αn+ βn)

обозначим αn- βn = γn, следовательно xn+ уn = а + b + γn, γn элемент бесконечно малой последовательности;

следовательно,

Следствие: разность двух сходящихся последовательностей есть последовательность сходящаяся, и её предел равен разности их пределов.

Теорема 4:

Если последовательности {xn} и {уn} сходятся, то и последовательность {xn* уn} также сходится и её предел равен произведению её множителей (пределов).

Доказательство:

xn → a, следовательно xn = a + αn

уn → b, следовательно уn = b + βn

xn* уn = (а + αn)*(b + βn)=аb+(а βn+ bαn + αn βn)

обозначим γn= а βn+ bαn + αn βn, где γn элемент бесконечно малой последовательности, получается

xn* уn = ab+ γn,

следовательно,

Теорема 5:

Если последовательности {xn} и {уn} сходятся к числам а и b соответственно, и если b ≠ 0, предел частного

существует, конечен и равен частному пределов.

Доказательство:

Т.к. последовательность {уn} сходится к b, то по определению сходящейся последовательности, для любого ε > 0, найдётся N(ε), такой что для всех n > N, будет выполнятся неравенство |b– yn|< ε.

Тогда положив

, видим, что

,

откуда следует

следовательно

.

Т.к., согласно условию b ≠ 0, то из последнего неравенства следует, что для всех n > N элементы последовательности {уn} не равны 0, значит именно с этого номера N можно определить последовательность

xn = a + αn

уn = b + βn, следовательно

обозначим γn= αпb – aβn, γnэлемент бесконечно малой последовательности.

,

а тогда из последнего равенства, следует

, откуда

Характерные примеры нахождения пределов последовательности

Числовая последовательность задана общим членом xп, рассмотрим его:

при нахождении такого предела говорят, что будем раскрывать неопределённость вида

.

при нахождении такого предела, говорят, что будем раскрывать неопределенность вида
.

Для раскрытия неопределённости

доделим числитель и знаменатель на наибольшую степень n.

Таким образом, имеет место правило:

Предел отношения двух многочленов равен бесконечности, если степень числителя больше степени знаменателя, нулю, если степень числителя меньше степени знаменателя и отношению коэффициентов при старших членах, если степени числителя и знаменателя равны.

Для упрощения задачи нахождения предела последовательности, вышеуказанного вида, мы прибегаем к помощи теоремы Штольца.

Теорема Штольца

Для определения пределов неопределённых выражений

типа
часто бывает полезна следующая теорема, принадлежащая Штольцу (O. Stolz).

Теорема: Пусть варианта

,причём – хотя бы начиная с некоторого места – с возрастанием п и уп возрастает: т.е. уп+1 > yn. Тогда

если только существует предел справа (конечный или даже бесконечный).

Доказательство: Допустим сначала, что этот предел равен конечному числу L:

Тогда по любому заданному

найдется такой номер N, что для n > N будет

или

.

Значит, какое бы n > N ни взять, все дроби

лежат между этими границами. Так как знаменатели их, ввиду возрастания уп вместе с номером п, положительны, то между теми же границами содержится и дробь

числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n > N


запишем тождество

откуда

.

Второе слагаемое справа, как мы видели выше, при n > N становится <

.

Первое же слагаемое, ввиду того, что, также будет <

, скажем, для n > N. Если при этом взять N> N, то для n > N очевидно

,

что и доказывает наше утверждение.

Случай бесконечного предела приводится к выше рассмотренному. Пусть, например,