Смекни!
smekni.com

Сплайны, финитные функции (стр. 2 из 3)

Подобласти

получили название конечные элементы.

Затем на каждом

как на конечном носителе строим базисную финитную функцию
. Все функции таким образом выбранного базиса линейно независимы в силу условий (2.1), (2.2).

Отметим преимущества такого выбора базиса:

а) ввиду того, что

выбираются значительно меньшими
и при этом скалярные произведения

(2.3)

равны нулю для функций с непересекающимися носителями, матрица проекционного уравнения будет сильно разрежена. Более того, если условие

выполняется только для смежных носителей, то матрица получается ленточной, т.е. аналогична той, к которой приводят сеточные методы;

б) возможность выбора специфических приграничных конечных элементов и связанных с ними финитных функций, учитывающих особенности границы, позволяет эффективно решать краевые задачи на достаточно произвольной области

.

Основная трудность аппроксимации финитными функциями состоит в сопряжении финитных функций на границах Wk таким образом, чтобы функция

в целом была непрерывна вместе со своими производными достаточно высокого порядка.

При таком выборе базиса естественно поставить вопросы о его полноте, выборе вида функций

и аппроксимационных свойствах разложения искомого решения

. (2.4)

На все эти вопросы частично дает ответ теория Стренга-Фикса.

2.2 Теория аппроксимации финитными функциями Стренга-Фикса

Изложим основные идеи этой теории для функций одной переменной с регулярными конечными элементами.

Область

покрываем равномерной сеткой

, [p] – целая часть p.

Конечные элементы

выберем как отрезки длиной
с центром в точке
:
. Если
, смежные элементы не пересекаются и их длина равна
: если
, то длина пересечения равна
, длина
равна
; при
– длина пересечения
, длина
равна
. Заметим, что такое покрытие полностью удовлетворяет условиям (2.2). Все базисные финитные функции с носителями
выберем одинаковой формы как сдвиги одной «стандартной» финитной функции
:

;
(2.5)

Если «стандартная» функция нормирована к единице, то ее сдвиги записываются в виде

(2.6)

Теорема Стренга-Фикса (один из вариантов)

Допустим, что

. В этом случае для
существует преобразование Фурье:

прямое

обратное

Допустим, что для преобразования Фурье стандартной финитной функции

выполнено условие

и
при
(2.7)

(т.е. в

точках
имеет нули
й кратности).

Тогда существуют такие

, что при

.

Это значит, что если, например, подобрать

, у которой условия теоремы выполняются для
, то аппроксимация самой функции
имеет порядок
, аппроксимация ее первой производной
, второй –
.

Наличие такой центральной теоремы, а также еще ряда доказанных Стренгом-Фиксом теорем, в частности о существовании функций, удовлетворяющих условиям (2.7), дает алгоритм для построения базисных финитных функций, обладающих необходимыми аппроксимационными свойствами.


3. B-сплайны Шёнберга

В вычислительной математике B-сплайном называют сплайн-функцию, имеющую наименьший носитель для заданной степени, порядка гладкости и разбиения области определения. Фундаментальная теорема устанавливает, что любая сплайн-функция для заданной степени, гладкости и области определения может быть представлена как линейная комбинация B-сплайнов той же степени и гладкости на той же области определения. [1] Термин B-сплайн был введён И. Шёнбергом и является сокращением от словосочетания «базисный сплайн». [2] B-сплайны могут быть вычислены с помощью алгоритма де Бора, обладающего устойчивостью.

В системах автоматизированного проектирования и компьютерной графике термин B-сплайн часто описывает сплайн-кривую, которая задана сплайн-функциями, выраженными линейными комбинациями B-сплайнов.

Когда узлы равноудалены друг от друга, говорят, что B-сплайн является однородным, в противном случае его называют неоднородным.

Когда количество узлов совпадает со степенью сплайна, B-сплайн вырождается в кривую Безье. Форма базисной функции определяется расположением узлов. Масштабирование или параллельный перенос базисного вектора не влияет на базисную функцию.

Сплайн содержится в выпуклой оболочке его опорных точек.

Базисный сплайн степени n:

.

не обращается в нуль только на промежутке [ti, ti+n+1], то есть:

. (3.1)

Другими словами, изменение одной опорной точки влияет только на локальное поведение кривой, а не на глобальное, как в случае кривых Безье.

Базисная функция может быть получена из полинома Бернштейна

В-сплайн и некоторые наиболее часто используемые базисы

Теорема Стренга-Фикса указывает на то, что если стандартную финитную функцию

выбрать исходя из условия (2.7), то ряд (2.4), построенный на основе ее сдвигов, будет обладать хорошими аппроксимационными свойствами.

Шенберг предложил один интересный класс функций, удовлетворяющих условию (2.7). Функцию

называют В-сплайном (Шенберга) степени
, если ее преобразование Фурье имеет вид

. (3.2)

Как видим, функция (6.8) удовлетворяет всем условиям (6.7).

Базис из ступенек

Довольно просто показать, что при