Смекни!
smekni.com

Сплайны, финитные функции (стр. 1 из 3)

Реферат:

«Сплайны. Финитные функции. Основные понятия, назначение. В сплайны Шенберга»


Введение

Функции, подобные тем, что сейчас называют сплайнами были известны математикам давно, начиная как минимум с Эйлера, но их интенсивное изучение началось, фактически, только в середине XX века. В 1946 году Исаак Шёнберг впервые употребил этот термин в качестве обозначения класса полиномиальных сплайнов. До 1960 годов сплайны были в основном инструментом теоретических исследований, они часто появлялись в качестве решений различных экстремальных и вариационных задач, особенно в теории приближений.

После 1960 года с развитием вычислительной техники началось использование сплайнов в компьютерной графике и моделировании, что продолжается по сей день.


1. Сплайны

Под сплайном (от англ. spline – планка, рейка) обычно понимают кусочно-заданную функцию, совпадающую с функциями более простой природы на каждом элементе разбиения своей области определения.

Классический сплайн одной переменной строится так: область определения разбивается на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым алгебраическим полиномом. Максимальная степень из использованных полиномов называется степенью сплайна. Разность между степенью сплайна и получившейся гладкостью называется дефектом сплайна. Например, непрерывная ломаная есть сплайн степени 1 и дефекта 1.

Сплайны имеют многочисленные применения как в математической теории, так и в разнообразных вычислительных приложениях. В частности, сплайны двух переменных интенсивно используются для задания поверхностей в различных системах компьютерного моделирования.

1.1 Кривые Безье

Кривые Безье́ или Кривые Бернштейна-Безье были разработаны в 60-х годах XX века независимо друг от друга Пьером Безье и Полем де Кастельжо.

Впервые кривые были представлены широкой публике в 1962 году французским инженером Пьером Безье, который, разработав их независимо от де Кастельжо, использовал их для компьютерного проектирования автомобильных кузовов. Кривые были названы именем Безье, а именем де Кастельжо назван разработанный им рекурсивный способ определения кривых (алгоритм де Кастельжо).

Впоследствии это открытие стало одним из важнейших инструментов систем автоматизированного проектирования и программ компьютерной графики.

Определение

Кривая Безье – параметрическая кривая, задаваемая выражением:

(1.1)

где

– функция компонент векторов опорных вершин, а
– базисные функции кривой Безье, называемые также полиномами Бернштейна.

(1.2)

, (1.3)

где n – степень полинома, i – порядковый номер опорной вершины

1.2 Виды кривых Безье:

1. Линейные кривые

При n = 1 кривая представляет собой отрезок прямой линии, опорные точки P0 и P1 определяют его начало и конец. Кривая задаётся уравнением:

(1.4)

2. Квадратичные кривые

Квадратичная кривая Безье (n = 2) задаётся 3-мя опорными точками: P0, P1 и P2:

(1.5)

Квадратичные кривые Безье в составе сплайнов используются для описания формы символов в шрифтах TrueType и в SWF файлах.

3. Кубические кривые

В параметрической форме кубическая кривая Безье (n = 3) описывается следующим уравнением:

(1.6)

Четыре опорные точки P0, P1, P2 и P3, заданные в 2-х или 3-мерном пространстве определяют форму кривой.

Линия берёт начало из точки P0 направляясь к P1 и заканчивается в точке P3 подходя к ней со стороны P2. То есть кривая не проходит через точки P1 и P2, они используются для указания её направления. Длина отрезка между P0 и P1 определяет, как скоро кривая повернёт к P3.

Рисунок 1 Кубическая кривая Безье

В матричной форме кубическая кривая Безье записывается следующим образом:


, (1.7)

где

называется базисной матрицей Безье:

(1.8)

В современных графических системах, таких как PostScript, Metafont и GIMP для представления криволинейных форм используются сплайны Безье, составленные из кубических кривых.

1.3 Построение кривых Безье

1. Линейные кривые

Параметр t в функции, описывающей линейный случай кривой Безье, определяет где именно на расстоянии от P0 до P1 находится B(t). Например, при t = 0,25 значение функции B(t) соответствует четверти расстояния между точками P0 и P1. Параметр t изменяется от 0 до 1, а B(t) описывает отрезок прямой между точками P0 и P1.

Рисунок 2 Построение линейной кривой Безье


2. Квадратичные кривые

Для построения квадратичных кривых Безье требуется выделение двух промежуточных точек Q0 и Q1 из условия чтобы параметр t изменялся от 0 до 1:

Точка Q0 изменяется от P0 до P1 и описывает линейную кривую Безье.

Точка Q1 изменяется от P1 до P2 и также описывает линейную кривую Безье.

Точка B изменяется от Q0 до Q1 и описывает квадратичную кривую Безье.

Рисунок 3 Построение квадратичной кривой Безье

3. Кривые высших степеней

Для построения кривых высших порядков соответственно требуется и больше промежуточных точек. Для кубической кривой это промежуточные точки Q0, Q1 и Q2, описывающие линейные кривые, а также точки R0 и R1, которые описывают квадратичные кривые: более простое уравнение p0q0/p0q1=q1p1/p1p2=bq0/q1q0

Рисунок 4 Построение кубической кривой Безье


Для кривых четвёртой степени это будут точки Q0, Q1, Q2 и Q3, описывающие линейные кривые, R0, R1 и R2, которые описывают квадратичные кривые, а также точки S0 и S1, описывающие кубические кривые Безье:

Рисунок 5 Построение кривой Безье 4-ой степени

1.4 Применение в компьютерной графике

Благодаря простоте задания и манипуляции, кривые Безье нашли широкое применение в компьютерной графике для моделирования гладких линий. Кривая целиком лежит в выпуклой оболочке своих опорных точек. Это свойство кривых Безье с одной стороны значительно облегчает задачу нахождения точек пересечения кривых (если не пересекаются выпуклые оболочки опорных точек, то не пересекаются и сами кривые), а с другой стороны позволяет осуществлять интуитивно понятное управление параметрами кривой в графическом интерфейсе с помощью её опорных точек. Кроме того аффинные преобразования кривой (перенос, масштабирование, вращение и др.) также могут быть осуществлены путём применения соответствующих трансформаций к опорным точкам.

Наибольшее значение имеют кривые Безье второй и третьей степеней (квадратичные и кубические). Кривые высших степеней при обработке требуют большего объёма вычислений и для практических целей используются реже. Для построения сложных по форме линий отдельные кривые Безье могут быть последовательно соединены друг с другом в сплайн Безье. Для того, чтобы обеспечить гладкость линии в месте соединения двух кривых, три смежные опорные точки обеих кривых должны лежать на одной прямой.

1.5 Преобразование квадратичных кривых Безье в кубические

Квадратичная кривая Безье с координатами

преобразовывается в кубическую кривую Безье с координатами:

2. Финитные функции

Финитной называется функция

, определенная для всех
, но отличная от нуля лишь на некоторой конечной области
, называемой конечным носителем:

(2.1)

Для

, определенных на
, построение базиса
из финитных функций осуществляется следующим образом. Сначала область
, в которой решается задача, некоторым регулярным образом покрывается конечным числом
перекрывающихся подобластей
, например как на рис. 6.1:

(2.2)

Желательно, чтобы

только для
, смежных с
.