задовольняють деякій системі диференціальних рівнянь. Перш, ніж виписати цю систему, помітимо:
тому що
рішення системи (8). Заміняючи в тотожності (9)
З тотожностей (9) і (10) знайдемо похідні:
У такий спосіб вектор-функція
задовольняє наступній системі диференціальних рівнянь порядку
Систему (12) будемо називати системою пар-непара, що відповідає системі (8). рішення системи чіт-непара, як треба з умови а), однозначно визначається своїми початковими умовами.
4. Побудова прикладів систем, парна частина загального рішення яких постійна
Приклад
Знайдемо рішення: будемо використовувати метод виключення, візьмемо перше рівняння системи й виразимо з нього
тепер диференціюємо його
Ми можемо дорівняти ліву частину отриманого рівняння з лівою частиною другого рівняння вихідної системи
Зробимо перетворення й приведемо подібні
У такий спосіб:
Зробимо перевірку, для цього у вихідну систему підставимо отримане рішення:
Одержали вірні рівності. Значить було знайдено правильне рішення вихідної системи.
Парна частина загального рішення:
Приклад
Знайдемо рішення: будемо використовувати метод виключення, візьмемо перше рівняння системи й виразимо з нього
тепер диференціюємо його
Ми можемо дорівняти ліву частину отриманого рівняння з лівою частиною другого рівняння вихідної системи
Зробимо перетворення й приведемо подібні
У такий спосіб:
Зробимо перевірку:
Парна частина загального рішення
Приклад
Знайдемо рішення: будемо використовувати метод виключення, візьмемо перше рівняння системи й виразимо з нього
тепер диференціюємо його
Ми можемо дорівняти ліву частину отриманого рівняння з лівою частиною другого рівняння вихідної системи
Одержали два рішення
1)
2)
Зробимо перевірку для
Одержали вірні рівності. Значить було знайдено правильне рішення вихідної системи.
Зробимо перевірку для
Звідси видно, що
У такий спосіб:
Парна частина загального рішення
З даних прикладів можемо помітити, що рішення систем записується у вигляді:
де
Системи виду (13) будуть мати сімейства рішень із постійною парною частиною. У цьому легко переконається, проробивши обчислення, аналогічні попереднім прикладам.
5. Прості й найпростіші системи
Лема 9 Для всякої безупинно диференцюємої функції
для якої виконані тотожності (4), мають місце співвідношення
Теорема 10 Для всякої двічі безупинно диференцюємої функції