Підставимо значення
Одержуємо необхідну систему:
Приклад 17 Нехай
де
і перетворимо праву частину
Перепишемо отримане у вигляді:
Виразимо
Для всіх таких систем повинне бути виконане умова
Візьмемо
Підставимо знайдені значення в систему (18) й зробивши перетворення аналогічні прикладу 16, одержуємо:
Розглянемо тепер загальний випадок, коли нам задана парна частина
Тому, якщо
при заданій
Таким чином, ми прийшли до
Теорема 18 Усяка система
де
при будь-якої заданої диференціюємої функції
має загальне рішення з парною частиною
Якщо
те система (19) має вигляд:
Таким чином, ми прийшли до висновку:
Наслідок 19 Загальне рішення диференціальної системи має постійну парну частину тоді й тільки тоді, коли ця система найпростіша.
Висновок
Основним результатом даної роботи є побудова диференціальних систем, сімейство рішень яких має задану парну частину. А так само теорема про зв'язок найпростішої системи й системи, сімейство рішень якої має постійну парну частину.
Теорема. Загальне рішення диференціальної системи має постійну парну частину тоді й тільки тоді, коли ця система найпростіша.
Список джерел
[1] Арнольд В.І., Звичайні диференціальні рівняння. – К., 2004
[2] Бібіков Ю.Н., Загальний курс диференціальних рівнянь. – К., 1999
[3] Еругин Н.П., Книга для читання за загальним курсом диференціальних рівнянь.3-е видання. – К., 2000
[4] Мироненко В.И., Функція й періодичні рішення диференціальних рівнянь. – К., 2004
[5] Понтрягин Л.С., Звичайні диференціальні рівняння. – К., 2003