Смекни!
smekni.com

Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа (стр. 10 из 14)

Сравнение приемов решения уравнения в каждом из указанных случаев свидетельствует, что наиболее рациональным является приведение данного уравнения к простейшему тригонометрическому, так как процесс решения состоит из наименьшего числа операций, выполнение каждой из этих операций не может нарушить равносильность исходного и полученного уравнений, запись ответа более компактна.

В заключение приведем примеры тригонометрических уравнений, которые рекомендуем предложить учащимся для самостоятельного решения:

1 группу составляют тригонометрические уравнения, способ решения которых основан на определениях и некоторых свойствах тригонометрических функций.

а)

; б)
; в)
; г)

2 группу составляют простейшие тригонометрические уравнения, способ решения которых основан на определениях тригонометрических функций и понятиях арксинуса, арккосинуса и арктангенса числа.

а)

; б)
; в)
;

г)

;

3 группа задач объединяет тригонометрические уравнения, решение которых потребует выполнения тождественных преобразований тригонометрических и алгебраических выражений для приведения данного уравнения к одному из известных видов.

а)

; б)
;

в)

; г)
;

д)

.

2.3 Методика формирования умений решать тригонометрические неравенства

В процессе формирования у школьников умений решать тригонометрические неравенства, также можно выделить 3 этапа.

1. подготовительный,

2. формирование умений решать простейшие тригонометрические неравенства;

3. введение тригонометрических неравенств других видов.

Цель подготовительного этапа состоит в том, что необходимо сформировать у школьников умения использовать тригонометрический круг или график для решения неравенств, а именно:

- умения решать простейшие неравенства вида sinx> 1, sinx<-1 , cosx > 1, cosx < -1 с помощью свойств функций синус и косинус;

- умения составлять двойные неравенства для дуг числовой окружности или для дуг графиков функций;

- умения выполнять различные преобразования тригонометрических выражений.

Реализовать этот этап рекомендуется в процессе систематизации знаний школьников о свойствах тригонометрических функций. Основным средством могут служить задания, предлагаемые учащимся и выполняемые либо под руководством учителя, либо самостоятельно, а так же навыки наработанные при решении тригонометрических уравнений.

Приведем примеры таких заданий:

1. Отметьте на единичной окружности точку

, если

.

2. В какой четверти координатной плоскости расположена точка

, если

равно:

3. Отметьте на тригонометрической окружности точки

, если:

4. Приведите выражение к тригонометрическим функциям I четверти.

а)

б)
в)

5. Дана дуга МР. М – середина I – ой четверти, Р – середина II-ой четверти.

Ограничить значение переменной t для: (составить двойное неравенство)

а) дуги МР;

б) дуги РМ.

6. Записать двойное неравенство для выделенных участков графика:

7. Решите неравенства sinx > 1, sinx <-1 , cosx > 1, cosx <-1

8. Преобразовать выражение sin5xcos4x-cos5xsin4x

Обратим внимание на задания 5 и 6. Естественно, именно оно лежит в основе решения простейшего тригонометрического неравенства.

Неравенства, характеризующие дугу, мы предлагаем составлять в 2 шага. На первом шаге составляем «ядро» записи неравенства (это, собственно говоря, главное к чему следует научить школьников); для заданной дуги МР получим

. На втором шаге составляем общую запись:

,
.

Если же речь идёт о дуге РМ, то при записи «ядра» нужно учесть, что точка А(0) лежит внутри дуги, а потому к началу дуги нам приходиться двигаться по первой отрицательной окружности. Значит, ядро аналитической записи дуги РМ имеет вид

, а общая запись имеет вид.
,

При решении задания 7, следует особо обратить внимание на значимость свойств тригонометрических функций.

На втором этапе обучения решению тригонометрических неравенств можно предложить следующие рекомендации, связанные с методикой организации деятельности учащихся. При этом будем ориентироваться на уже имеющиеся у учащихся умения работать с тригонометрической окружностью или графиком, сформированные во время решения простейших тригонометрических уравнений.

Во-первых, мотивировать целесообразность получения общего приема решения простейших тригонометрических неравенств можно, обратившись, например, к неравенству вида

. Используя знания и умения, приобретенные на подготовительном этапе, учащиеся приведут предложенное неравенство к виду;
, но могут затрудниться в нахождении множества решений полученного неравенства, т.к. только лишь используя свойства функции синус решить его невозможно. Этого затруднения можно избежать, если обратиться к соответствующей иллюстрации (решение уравнения графически или с помощью тригонометрического круга).

Во-вторых, учитель должен обратить внимание учащихся на различные способы выполнения задания, дать соответствующий образец решения неравенства и графическим способом и с помощью тригонометрического круга.

Предлагаем такие варианты решения неравенства

1. Решение неравенства с помощью круга.

Решим тригонометрическое неравенство

.

На первом занятии по решению тригонометрических неравенств предложим учащимся подробный алгоритм решения, который в пошаговом представлении отражает все основные умения, необходимые для решения неравенства.

Шаг 1. Начертим единичную окружность, отметим на оси ординат точку

и проведем через нее прямую, параллельную оси абсцисс. Эта прямая пересечет единичную окружность в двух точках. Каждая из этих точек изображает числа, синус которых равен
.

Шаг 2. Эта прямая разделила окружность на две дуги. Выделим ту из них, на которой изображаются числа, имеющие синус больший, чем

. Естественно, эта дуга расположена выше проведенной прямой.

Шаг 3.Выберем один из концов отмеченной дуги. Запишем одно из чисел, которое изображается этой точкой единичной окружности

.

Шаг 4. Для того чтобы выбрать число, соответствующее второму концу выделенной дуги, "пройдем" по этой дуге из названного конца к другому. При этом напомним, что при движении против часовой стрелки числа, которые мы будем проходить, увеличиваются (при движении в противоположном направлении числа уменьшались бы). Запишем число, которое изображается на единичной окружности вторым концом отмеченной дуги
.

Таким образом, мы видим, что неравенству

удовлетворяют числа, для которых справедливо неравенство
. Мы решили неравенство для чисел, расположенных на одном периоде функции синус. Поэтому все решения неравенства могут быть записаны в виде