Сравнение приемов решения уравнения в каждом из указанных случаев свидетельствует, что наиболее рациональным является приведение данного уравнения к простейшему тригонометрическому, так как процесс решения состоит из наименьшего числа операций, выполнение каждой из этих операций не может нарушить равносильность исходного и полученного уравнений, запись ответа более компактна.
В заключение приведем примеры тригонометрических уравнений, которые рекомендуем предложить учащимся для самостоятельного решения:
1 группу составляют тригонометрические уравнения, способ решения которых основан на определениях и некоторых свойствах тригонометрических функций.
а)
; б) ; в) ; г)2 группу составляют простейшие тригонометрические уравнения, способ решения которых основан на определениях тригонометрических функций и понятиях арксинуса, арккосинуса и арктангенса числа.
а)
; б) ; в) ;г)
;3 группа задач объединяет тригонометрические уравнения, решение которых потребует выполнения тождественных преобразований тригонометрических и алгебраических выражений для приведения данного уравнения к одному из известных видов.
а)
; б) ;в)
; г) ;д)
.2.3 Методика формирования умений решать тригонометрические неравенства
В процессе формирования у школьников умений решать тригонометрические неравенства, также можно выделить 3 этапа.
1. подготовительный,
2. формирование умений решать простейшие тригонометрические неравенства;
3. введение тригонометрических неравенств других видов.
Цель подготовительного этапа состоит в том, что необходимо сформировать у школьников умения использовать тригонометрический круг или график для решения неравенств, а именно:
- умения решать простейшие неравенства вида sinx> 1, sinx<-1 , cosx > 1, cosx < -1 с помощью свойств функций синус и косинус;
- умения составлять двойные неравенства для дуг числовой окружности или для дуг графиков функций;
- умения выполнять различные преобразования тригонометрических выражений.
Реализовать этот этап рекомендуется в процессе систематизации знаний школьников о свойствах тригонометрических функций. Основным средством могут служить задания, предлагаемые учащимся и выполняемые либо под руководством учителя, либо самостоятельно, а так же навыки наработанные при решении тригонометрических уравнений.
Приведем примеры таких заданий:
1. Отметьте на единичной окружности точку
, если .2. В какой четверти координатной плоскости расположена точка
, если равно:3. Отметьте на тригонометрической окружности точки
, если:4. Приведите выражение к тригонометрическим функциям I четверти.
а)
б) в)5. Дана дуга МР. М – середина I – ой четверти, Р – середина II-ой четверти.
Ограничить значение переменной t для: (составить двойное неравенство)
а) дуги МР;
б) дуги РМ.
6. Записать двойное неравенство для выделенных участков графика:
7. Решите неравенства sinx > 1, sinx <-1 , cosx > 1, cosx <-1
8. Преобразовать выражение sin5xcos4x-cos5xsin4x
Обратим внимание на задания 5 и 6. Естественно, именно оно лежит в основе решения простейшего тригонометрического неравенства.
Неравенства, характеризующие дугу, мы предлагаем составлять в 2 шага. На первом шаге составляем «ядро» записи неравенства (это, собственно говоря, главное к чему следует научить школьников); для заданной дуги МР получим
. На втором шаге составляем общую запись: , .Если же речь идёт о дуге РМ, то при записи «ядра» нужно учесть, что точка А(0) лежит внутри дуги, а потому к началу дуги нам приходиться двигаться по первой отрицательной окружности. Значит, ядро аналитической записи дуги РМ имеет вид
, а общая запись имеет вид. ,При решении задания 7, следует особо обратить внимание на значимость свойств тригонометрических функций.
На втором этапе обучения решению тригонометрических неравенств можно предложить следующие рекомендации, связанные с методикой организации деятельности учащихся. При этом будем ориентироваться на уже имеющиеся у учащихся умения работать с тригонометрической окружностью или графиком, сформированные во время решения простейших тригонометрических уравнений.
Во-первых, мотивировать целесообразность получения общего приема решения простейших тригонометрических неравенств можно, обратившись, например, к неравенству вида
. Используя знания и умения, приобретенные на подготовительном этапе, учащиеся приведут предложенное неравенство к виду; , но могут затрудниться в нахождении множества решений полученного неравенства, т.к. только лишь используя свойства функции синус решить его невозможно. Этого затруднения можно избежать, если обратиться к соответствующей иллюстрации (решение уравнения графически или с помощью тригонометрического круга).Во-вторых, учитель должен обратить внимание учащихся на различные способы выполнения задания, дать соответствующий образец решения неравенства и графическим способом и с помощью тригонометрического круга.
Предлагаем такие варианты решения неравенства
1. Решение неравенства с помощью круга.
Решим тригонометрическое неравенство
.На первом занятии по решению тригонометрических неравенств предложим учащимся подробный алгоритм решения, который в пошаговом представлении отражает все основные умения, необходимые для решения неравенства.
Шаг 1. Начертим единичную окружность, отметим на оси ординат точку
и проведем через нее прямую, параллельную оси абсцисс. Эта прямая пересечет единичную окружность в двух точках. Каждая из этих точек изображает числа, синус которых равен .Шаг 2. Эта прямая разделила окружность на две дуги. Выделим ту из них, на которой изображаются числа, имеющие синус больший, чем
. Естественно, эта дуга расположена выше проведенной прямой.Шаг 3.Выберем один из концов отмеченной дуги. Запишем одно из чисел, которое изображается этой точкой единичной окружности
. Шаг 4. Для того чтобы выбрать число, соответствующее второму концу выделенной дуги, "пройдем" по этой дуге из названного конца к другому. При этом напомним, что при движении против часовой стрелки числа, которые мы будем проходить, увеличиваются (при движении в противоположном направлении числа уменьшались бы). Запишем число, которое изображается на единичной окружности вторым концом отмеченной дуги .Таким образом, мы видим, что неравенству
удовлетворяют числа, для которых справедливо неравенство . Мы решили неравенство для чисел, расположенных на одном периоде функции синус. Поэтому все решения неравенства могут быть записаны в виде