Смекни!
smekni.com

Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа (стр. 11 из 14)

Внимательно рассмотрите рисунок и разберитесь, почему все решения неравенства

могут быть записаны в виде

Обратить внимание учащихся на то, что при решении неравенств для функции косинус, прямую проводим параллельно оси ординат.

1. Графический способ решения неравенства.

Строим графики

и
, учитывая, что

Затем записываем уравнение

и его решение
, найденное с помощью формул
.

(Придавая nзначения 0; 1; 2, находим три корня составленного уравнения). Значения

являются тремя последовательными абсциссами точек пересечения графиков
и
. Очевидно, что всегда на интервале (
) выполняется неравенство
, а на интервале (
) – неравенство
. Нас интересует первый случай, и тогда добавив к концам этого промежутка число, кратное периоду синуса, получим решение неравенства
в виде:
;

Подведём итог. Чтобы решить неравенство

, надо составить соответствующее уравнение и решить его. Из полученной формулы найти корни
и
, и записать ответ неравенства в виде:
.

В-третьих, факт о множестве корней соответствующего тригонометрического неравенства очень наглядно подтверждается при решении его графическим способом.

Необходимо продемонстрировать учащимся, что виток, который является решением неравенства, повторяется через один и тот же промежуток, равный периоду тригонометрической функции. Так же можно рассмотреть аналогичную иллюстрацию для графика функции синус.

В-четвертых, целесообразно провести работу по актуализации у учащихся приемов преобразования суммы (разности) тригонометрических функций в произведение, обратить внимание школьников на роль этих приемов при решении тригонометрических неравенств.

Организовать такую работу можно через самостоятельное выполнение учащимися предложенных учителем заданий, среди которых выделим следующие:

В-пятых, от учащихся необходимо требовать обязательной иллюстрации решения каждого простейшего тригонометрического неравенства с помощью графика или тригонометрического круга. Обязательно следует обратить внимание на ее целесообразность, в особенности на применение круга, так как при решении тригонометрических неравенств соответствующая иллюстрация служит очень удобным средством фиксации множества решений данного неравенства

В связи с реализацией третьего этапа процесса формирования у школьников умений решать тригонометрические неравенства сделаем лишь два замечания.

Во-первых, знакомство учащихся с приемами решения тригонометрических неравенств, не являющихся простейшими, целесообразно осуществлять по следующей схеме: обращение к конкретному тригонометрическому неравенству

обращение к соответствующему тригонометрическому уравнению
совместный поиск (учитель – учащиеся) приема решения
самостоятельный перенос найденного приема на другие неравенства этого же вида.

Во-вторых, чтобы систематизировать знания учащихся о тригонометрии, рекомендуем специально подобрать такие неравенства решение которых требует различных преобразований, которые могут быть реализованы в процессе его решения, акцентировать внимание учащихся на их особенностях.

В качестве таких продуктивных неравенств можно предложить, например, следующие

В заключение приведем примеры тригонометрических неравенств, которые рекомендуем предложить учащимся для самостоятельного решения:


1)

; 2)
; 3)
;

4)

; 5)
; 6)
;

7)

; 8)
; 9)
;

10)

; 11)
; 12)
;

13)

; 14)
; 15)
.

Итак, в теме «Тригонометрические неравенства» мы предлагаем изучать только то, что даст возможность школьникам почувствовать именно специфику тригонометрических неравенств.

Педагогический эксперимент

Предметом исследования является система тригонометрических уравнений и неравенств, направленная на развитие умений решать тригонометрические уравнения и неравенства

Объект исследования – процесс обучения математике.

Гипотеза эксперимента: если в процессе изучения тригонометрического материала использовать разработанную методику, то это будет способствовать осознанному и качественному формированию умений решать тригонометрические неравенства.

Цель: заключается в выявлении и обосновании возможности использования данной методики для формирования умений решать тригонометрические уравнения и неравенства.

В процессе исследования проблемы и проверки достоверности сформулированной гипотезы необходимо было решить следующие задачи:

1. Выявить роль тригонометрических уравнений и неравенств при обучении математике;

2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений;

3. Экспериментально проверить эффективность разработанной методики.

Для решения поставленных задач были использованы следующие методы исследования:

- анализ психолого-педагогической и методической литературы;

- теоретический метод;

- практический метод.

Ход эксперимента можно разбить на три этапа:

- Диагностирующий;

- Обучающий;

- Диагностирующий

База исследования: Средняя общеобразовательная школа №2 г. Каргополя.

Диагностирующий этап эксперимента

В качестве испытуемых 19 учеников 10 «Г» класса средней школы №2 г. Каргополя. Среди учеников были хорошо успевающие, но преимущественно отстающие ученики.