где
– компоненты вектора , – евклидова норма вектора, его длина.В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.
Деление вектора на величину его нормы называют нормированием, т.е. приведением вектора к единичной длине.
Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то
,где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x, кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству
.Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.
4.Матрицы и определители
Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:
Учитывая это свойство и зная, что определитель единичной матрицы det(E)=1, можно найти матрицу B и ее определитель из уравнения:
откуда следует, что
и .Из свойств определителей нелишне помнить и такие:
где
– транспонированная матрица A,n – размер квадратной матрицы A,
– матрица перестановки строк или столбцов,s, c=0,1,…, n – число выполненных перестановок строк и / или столбцов.
Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:
Умножив вектор правых частей на обратную матрицу, получим вектор решения.
Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:
,где
– алгебраическое дополнение, а – минор матрицы A, получаемый вычислением определителя матрицы A, в которой вычеркнуты j-тая строка и i-тый столбец.Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.
Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.
5.Собственные значения и собственные векторы
Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.
Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:
В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром
и неизвестным вектором-столбцом x и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю. Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.Полагая, что решение все же существует, т.е.
и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n относительно
:Это уравнение называется характеристическим уравнением матрицы и имеет в общем случае n корней, возможно комплексных, которые называются собственными значениями матрицы и в совокупности составляют спектр матрицы. Относительно n корней различают два случая: все корни различные или некоторые корни кратные.
Важным свойством характеристического уравнения матрицы A является то, что согласно теореме Гамильтона-Кели, матрица A удовлетворяет ему:
где
– k-тая степень матрицы.Подставляя каждое
в однородную систему, получим векторно-матричные уравнения для нахождения векторов или векторов-строк . Эти векторы называются соответственно правыми собственными векторами и левыми собственными векторами матрицы.Решение однородных уравнений имеет некоторую специфику. Если
(как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:Если все собственные числа различны, то собственные векторы матрицы A образуют систему n линейно независимых векторов таких, что
6.Ортогональные матрицы из собственных векторов
Из правых собственных векторов можно составить матрицу T, а из левых – матрицу
, которые обладают уникальными свойствами по отношению к матрице A.Умножив матрицу A слева на матрицу
, а справа – на матрицу T, после несложных преобразований получим: