Смекни!
smekni.com

Линейные системы уравнений (стр. 3 из 4)

.

Каждое скалярное произведение

в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:

Поэтому, результатом преобразования матрицы A будет диагональная матрица с собственными значениями, расположенными на диагонали:

Если вместо A взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство

, откуда следует
. Последнее позволяет для преобразования матрицы A в диагональную обходиться только системой правых собственных векторов-столбцов:

Последнее показывает, что умножение матрицы A на

слева и на S справа, где S – произвольная не особая матрица, преобразует ее в некоторую матрицу B, которая имеет определитель, равный определителю матрицы A. Такие преобразования матриц называют эквивалентными (подобными).

Продолжая использовать T-матрицу, несложно получить следующие важные результаты:


.

7.Функции с матричным аргументом

Пусть теперь задана некоторая матричная функция от матрицы A:

.

С другой стороны очевидно и обратное

,

где

– матрица с одной единицей на i-том месте диагонали (
).

где

проекторы матрицыA, образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно
и
. Сумма проекторов
.

Проекторы обладают свойствами идемпотентных матриц, т.е. матриц, все степени которых равны первой. Для невырожденных проекторов (

) матрицы A (
) справедливо:

Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A:

.

Если в качестве матричных функций взять

и
, то их спектральные разложения будут следующими:

8. Вычисление проекторов матрицы

Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:

По известному спектру

проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A, которые вычисляются очевидным образом, например, такие:

Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:

В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:


где

– значения i-тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,

– число кратных корней
,

– проекторы кратных корней, в выражении которых содержатся

– проекторы различных корней.

9. Пример использования числовых характеристик матриц

Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.

Для примера построим матрицу с заданными собственными значениями

и собственными векторами, основанными на векторах
.

Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е.

. Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта.

Для заданных векторов построим систему векторов

таких, что
, следующим образом:

Откуда последовательно находятся коэффициенты

:

Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый

был ортогонален каждому
, положив
и приравняв нулю скалярные произведения
:

Определитель этой системы называют определителем Грама:


,

где

- матрица, в общем случае комплексно сопряженная с матрицей

, составленной из заданных векторов.

Если грамиан положителен, а он всегда неотрицателен, то векторы

линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.

Для заданного выше набора векторов

определитель произведения матрицы X на транспонированную X*будет равен

Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы: