Смекни!
smekni.com

Линейные системы уравнений (стр. 1 из 4)

Реферат

Тема: «Линейные системы уравнений»

Содержание

1. Уравнения, векторы, матрицы, алгебра

2. Умножение матриц как внешнее произведение векторов

3. Нормы векторов и матриц

4. Матрицы и определители

5. Собственные значения и собственные векторы

6. Ортогональные матрицы из собственных векторов

7. Функции с матричным аргументом

8. Вычисление проекторов матрицы

Пример использования числовых характеристик матриц

10. Оценка величины и нахождение собственных значений

Литература


1. Уравнения, векторы, матрицы, линейная алгебра

Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.

Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.

Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:

Здесь

– неизвестные,

– заданные числа,

– заданные числовые коэффициенты.

Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:

список переменных –

,

список правых частей –

и

матрицу коэффициентов –

.

Первые два объекта в линейной алгебре называют вектором-строкой, а второй – квадратной матрицей.

Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц:

,
– аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.

Если рассмотреть i-тую строку исходной системы

,

то в ней кроме упорядоченного расположения компонент

присутствует упорядоченное по индексу j размещение коэффициентов
, которые могут рассматриваться как вектор-строка
. Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:

.

Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований

, и коммутативно.

Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:

или

.

Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).

Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице

. Теперь для представления исходной системы уравнений в виде
несложно определить векторно-матричную операцию
, результатом которой является вектор с i-той компонентой, равной
.

Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.

2. Умножение векторов и матриц

Среди n-мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:

,

которая при произвольном выборе

в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов
. Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все
, то такие векторы в наборе называют линейно независимыми. Такими векторами в частности будут единичные векторы
, у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j-строке.

Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n-мерную систему координат. Набор компонент любого вектора в этой n-мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.

Среди матриц размера

и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения
. Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y. Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x. Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:

.

Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:

,

где

– элемент матрицы С, равный скалярному произведению вектор-строки
матрицы В на вектор-столбец
матрицы А.

Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.

3.Нормы векторов и матриц

Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций: