Смекни!
smekni.com

Логарифмічно-лінійний аналіз (стр. 2 из 3)

Іноді необхідно побудувати систему міток, що забезпечує максимум коефіцієнта кореляції між двома змінними (оптимальні мітки). Ця система міток і відповідна їй матриця кореляції використовується потім для факторного і регресійного аналізу. Знаходження оптимальних міток пов'язане з перетворенням частот таблиці в частоти двовимірного нормального розподілу, оскільки кореляція перетвореного розподілу не може за абсолютною величиною перевищувати кореляцію двовимірного нормального розподілу. Перетворені таким чином змінні називають канонічними змінними. Розглянемо використання оптимальних міток для аналізу структури даних – виділення в таблиці спряженості лінійних і нелінійних ефектів. Звичайно при вивченні таблиці спряженості не робиться ніяких припущень щодо характеру зв'язку змінних, тоді як в конкретних дослідженнях буває важливо зрозуміти, чи відповідає фактичний розподіл гіпотезі, що висувається, – наприклад, гіпотезі про наявність лінійного зв'язку – чи ні, чи є розузгодження фактичних і теоретичних частот випадковими чи дійсно зв'язок змінних включає ряд складних взаємозв'язків.

Дослідити це питання дозволяє критерій χ2 через адитивні компоненти, які відповідають лінійним і нелінійним ефектам в структурі зв'язку між змінними. При цьому лінійні ефекти пов’язують з першим перетворенням змінних, нелінійні – з другим і т.д. перетвореннями. Адитивність ефектів випливає з ортогональності канонічних змінних.

Покажемо, що канонічний аналіз таблиці зв'язаності відповідає розкладанню статистики χ2 на ряд доданків, число яких залежить від розмірності таблиці. Перетворимо вираз таким чином:

(3.1)

(3.2)

Остання формула може бути подана за допомогою суми діагональних елементів, тобто слід симетричної матриці

, де N - матриця розмірності (m × p) з елементами
(m – число рядків таблиці, p – число стовпців):

(3.3)

Якщо число рядків таблиці не дорівнює числу стовбців, то, як правило, матрицю С формують так, щоб її розмірність була мінімальною (min(m,p)). Оскільки слід матриці дорівнює сумі її власних чисел, то вираз (3.3) приймає наступний вигляд:

(3.4)

де λk - k-е власне число матриці С.

Враховуючи, що власні числа є показниками кореляції (R2) між кожною парою канонічних змінних, виділених з вихідних наборів даних, запишемо рівність (3.4) у вигляді:

(3.5)

З m (або p) власних чисел матриці С максимальне завжди дорівнює одиниці, йому відповідає вироджений набір міток 1 = (1,...,1). Тому вираз (3.5) доцільно переписати так :

(3.6)

Найбільше з чисел, що залишилися (m - 1) або (p - 1) власних чисел відповідає гіпотезі лінійності зв'язку між категоризованими змінними; наступне за величиною значення λk відповідає гіпотезі про складніший характер взаємозв’язку змінних. Така інтерпретація компонент χ2 представляється можливою з причини того, що кожна подальша пара канонічних змінних є функцією першої перетвореної пари, а все розкладання χ2 є спадаючою послідовністю.

Можна показати, що традиційні методи зв'язків, засновані на критерії χ2, змішують різні за характером зв'язки і знайдена міра є середньою з різних зв'язків, що ігноруються за однією таблицею. Це випливає з виразу (3.6), який дозволяє будь-який показник щільності зв'язку подати через канонічні кореляції. Наприклад, коефіцієнт взаємної спряженості Чупрова виглядатиме так:

(3.7)

Таблиці 2×2 виділяються два власних числа матриці С. Оскільки перше дорівнює одиниці, то квадрат канонічної кореляції дорівнює квадрату коефіцієнта спряженості Пірсону:

(3.8)

Канонічні змінні дозволяють одержати якнайкраще, в сенсі деякого критерію, наближення коміркових частот таблиці спряженості. Як показали М. Кендалл і А. Стьюард, кожна спостережувана комірка може бути розбита на теоретичну частоту, яка відповідає гіпотезі про незалежність змінних, і адитивний внесок, пов'язаний з канонічною кореляцією:

(3.9)

де хik – канонічна мітка для і-ого рядка к-го власного числа; yjk – канонічна мітка для j-го стовпця і к-го власного числа.

Відповідно є можливість подати вихідну таблицю спряженості у вигляді серії таблиць, кожна з яких відповідає певній гіпотезі зв'язку змінних (тобто частоти таблиці, обчислені при тому або іншому власному числі λk матриці С).

Існує ряд способів знаходження канонічних міток. Найшвидше приводить до мети наступний порядок дій: спочатку визначаються хik діленням кожної компоненти відповідного власного вектора на корінь квадратний з маргінальної частки; потім визначаються yjk – шляхом усереднювання міток рядків для кожного j - й стовпця.

(3.10)

Набори міток хik і yjk, зважені за відповідними маргінальними частотами, мають нульові середні й одиничні дисперсії.

4. Побудова логарифмічної моделі

Логарифмічно лінійна модель системи з трьох змінних запишеться у вигляді:

λijkABC (4.1)

де ln(nijk) – очікувана частота чарунка (і, j, k) тривимірної таблиці спряженості, обчислена за умови незалежності змінних A, B, C; параметри λ визначають внесок у логарифм очікуваної частоти змінних як окремо , так і внаслідок їхньої взаємодії. Параметри λ логлінійної моделі задовольняють умовам:

(4.2)

Оцінки параметрів обчислюються за методом максимальної правдоподібності:

(4.3)

Точка в індексі означає середнє значення за цим індексом, так:

(4.4)

де nijk - частота комірки (і, j, k), яка спостерігається N – число комірок таблиці спряженості.

Оцінка дисперсії параметра λ для насиченої моделі дорівнює

(4.5)

де δiiZA = 1, якщо А належить групі змінних Z и

, в супротивному разі δiiZA = 0. Аналогічно обчислюються δjjZB, δkkZC.

Якщо поділити, знайдену в результаті розрахунків оцінку

на оцінку його середнє квадратичного відхилення
, то одержимо стандартизоване значення оцінки параметра. Це значення може бути використане для порівняння відносного внеску кожного параметра в nijk, тим самим для обчислення порівняльного значення впливу окремих змінних, кожному парний і множинному взаємозв'язки.

Відзначається, що, крім з насиченої моделі стандартизовані параметри

, рівні нулю, можна перейти до моделі, більш адекватної вихідних даних або апріорним припущенням про відносини між змінними.

Одержуємо модель ієрархічну за побудовою, оскільки модель врахована множинна взаємодія A, B, C, а це означає припущення існування зв'язків у будь-якій підгрупі зі складових "старших" взаємозв'язок (ABC) змінних, і тому в модель включені такі параметри, як λAB, λBC, λAC, λA, λB, λC. Якщо ж передбачається, що між змінними немає взаємозв'язків, то у модель не включається відповідний параметр λ . Порядок логлинейной моделі дорівнює найбільшому числу змінних.

Побудова моделі складається з наступних основних етапів: 1) означення порядку логлінійної моделі; 2) відбір параметрів заданого порядку для включення в підсумкову модель.

Логлінійна модель має порядок к, якщо будь-які до к + 1 і більше змінних одночасно незалежні. Тому для означення порядку моделі перевіряються гіпотези про незалежність будь-яких до к + 1 і більш змінних за допомогою критеріїв

и
(максимальної правдоподібності). Число ступенів вільності для обох статистик дорівнює n-p, де n – число всіх комірок таблиці, а p – число оцінюваних очікуваних частот за умови незалежності змінних.

Крім того, для кожного к-го порядку перевіряється гіпотеза про одночасну незалежність відповідних ним змінних за допомогою цих же критеріїв.

Так, для параметрів третього порядку перевіряється гіпотеза про відсутність потрійної взаємодії.

Спільна перевірка викладених вище гіпотез дозволяє визначити порядок моделі, що щонайкраще відбиває структуру взаємозв'язків змінних.