Распределение вероятных значений случайной величины χ2 непрерывно и ассиметрично. Оно зависит от числа степеней свободы (n) и приближается к нормальному распределению по мере увеличения числа наблюдений. Поэтому применение критерия χ2 к оценке дискретных распределений сопряжено с некоторыми погрешностями, которые сказываются на его величине, особенно на малочисленных выборках. Для получения более точных оценок выборка, распределяемая в вариационный ряд, должна иметь не менее 50 вариантов. Правильное применение критерия χ2 требует также, чтобы частоты вариантов в крайних классах не были бы меньше 5; если их меньше 5, то они объединяются с частотами соседних классов, чтобы в сумме составляли величину большую или равную 5. Соответственно объединению частот уменьшается и число классов (N). Число степеней свободы устанавливается по вторичному числу классов с учетом числа ограничений свободы вариации.
Так как точность определения критерия χ2 в значительной степени зависит от точности расчета теоретических частот (Т), для получения разности между эмпирическими и вычисленными частотами следует использовать неокругленные теоретические частоты.
В качестве примера возьмем исследование, опубликованное на сайте, который посвящен применению статистических методов в гуманитарных науках.
Критерий "Хи-квадрат" позволяет сравнивать распределения частот вне зависимости от того, распределены они нормально или нет.
Под частотой понимается количество появлений какого-либо события. Обычно, с частотой появления события имеют дело, когда переменные измерены в шкале наименований и другой их характеристики, кроме частоты подобрать невозможно или проблематично. Другими словами, когда переменная имеет качественные характеристики. Так же многие исследователи склонны переводить баллы теста в уровни (высокий, средний, низкий) и строить таблицы распределений баллов, чтобы узнать количество человек по этим уровням. Чтобы доказать, что в одном из уровней (в одной из категорий) количество человек действительно больше (меньше) так же используется коэффициент Хи-квадрат.
Разберем самый простой пример.
Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом:
Высокий (В) 27 чел.
Средний (С) 12 чел.
Низкий (Н) 11 чел.
Очевидно, что детей с высокой самооценкой большинство, однако это нужно доказать статистически. Для этого используем критерий Хи-квадрат.
Наша задача проверить, отличаются ли полученные эмпирические данные от теоретически равновероятных. Для этого необходимо найти теоретические частоты. В нашем случае, теоретические частоты – это равновероятные частоты, которые находятся путём сложения всех частот и деления на количество категорий.
В нашем случае:
(В + С + Н)/3 = (27+12+11)/3 = 16,6
Формула для расчета критерия хи-квадрат:
χ2 = ∑(Э - Т)² / Т
Эмпирич. (Э) | Теоретич. (Т) | (Э - Т)² / Т | |
Высокий | 27 чел. | 16,6 | 6,41 |
Средний | 12 чел. | 16,6 | 1,31 |
Низкий | 11 чел. | 16,6 | 1,93 |
"Активный" | "Старательный" | "Дисциплинированный" | |
Мальчики | 10 | 5 | 6 |
Девочки | 6 | 12 | 9 |
Для обработки полученных данных используем критерий хи-квадрат.
Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:
"Активный" | "Старательный" | "Дисциплинированный" | Итого: | |
Мальчики | 10 | 5 | 6 | 21 |
Девочки | 6 | 12 | 9 | 27 |
Итого: | 16 | 17 | 15 | s=48 |
Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).
"Активный" | "Старательный" | "Дисциплинированный" | Итого: | |
Мальчики | (21 * 16)/48 = 7 | (21 * 17)/48 = 7.44 | (21 * 15)/48 = 6.56 | 21 |
Девочки | (27 * 16)/48 = 9 | (27 * 17)/48 = 9.56 | (27 * 15)/48 = 8.44 | 27 |
Итого: | 16 | 17 | 15 | s=48 |
Итоговая таблица для вычислений будет выглядеть так:
Категория 1 | Категория 2 | Эмпирич. (Э) | Теоретич. (Т) | (Э - Т)² / Т |
Мальчики | "Активный" | 10 | 7 | 1,28 |
"Старательный" | 5 | 7,74 | 0,8 | |
"Дисциплинированный" | 6 | 6,56 | 0,47 | |
Девочки | "Активный" | 6 | 9 | 1 |
"Старательный" | 12 | 9,56 | 0,62 | |
"Дисциплинированный" | 9 | 8,44 | 0,04 | |
Сумма: 4,21 |
χ2 = ∑(Э - Т)² / Т
n = (R - 1), где R – количество строк в таблице.
В нашем случае хи-квадрат = 4,21; n = 2.
По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение χ2 = 5,99.
Полученное значение меньше критического, а значит принимается нулевая гипотеза.
Вывод: учителя не придают значение полу ребенка при написании ему характеристики.
Таблица 1
Студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования", "Статистика" и др. – в случае студентов экономических специальностей), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате знаний у специалистов по прикладной статистике недостаточно.
Поэтому большое значение имеет курс "Прикладная статистика" в технических вузах, а в экономических вузах – курса "Эконометрика", поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных.
1. Орлов А.И. Прикладная статистика. М.: Издательство "Экзамен", 2004.
2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999. – 479с.
3. Айвозян С.А. Теория вероятностей и прикладная статистика, т.1. М.: Юнити, 2001. – 656с.
4. Хамитов Г.П., Ведерникова Т.И. Вероятности и статистика. Иркутск: БГУЭП, 2006 – 272с.
5. Ежова Л.Н. Эконометрика. Иркутск: БГУЭП, 2002. – 314с.
6. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М. : Наука, 1975. – 111с.
7. Мостеллер Ф. Вероятность. М. : Мир, 1969. – 428с.
8. Яглом А.М. Вероятность и информация. М. : Наука, 1973. – 511с.
9. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982. – 256с.
10. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000. – 543с.
11. Математическая энциклопедия, т.1. М.: Советская энциклопедия, 1976. – 655с.
12. http://psystat.at.ua/ - Статистика в психологии и педагогике. Статья Критерий Хи-квадрат. Автор: Попов О.А.