Смекни!
smekni.com

Задачи на экстремум в планиметрии (стр. 2 из 4)

х1 = — 1, х2 = 1/5; х3 = 1.(2)

2) Представив производную в виде

f(х) = 5 (х + 1)2 (х1/5) (х - 1),(3)

исследуем каждое из критических значений.

а) При х < —1 все три двучлена формулы (3) отрицательны, так что слева от х = — 1 имеем:

f '(х) = 5 (-)2(-)(-) = +.(4)

Пусть аргумент перешел через значение х1= — 1, но не дошел до следующего критического значения х2 = 1/5. Тогда двучлен х + 1 стал положителен, а два других двучлена формулы (3) остаются отрицательными, и мы имеем: f '(х) = 5 (+)2 (-)(-) = +.(5)

Сравнив (4) и (5), видим, что при переходе

Рис. 11 через критическое значение х1= -1 производная не меняет знака, оставаясь положительной. Значит, в точке х =-1 экстремума нет; здесь функция f(x) возрастает (рис. 11).

б) Исследуем ближайшее большее критическое значение х2 = 1/5. В достаточной близости слева (т. е. между х1 = — 1 и х2 = 1/5) производная в силу (5) положительна. В достаточной близости справа (между х1 = 1/5 и х2 = +1) второй сомножитель положителен, и мы имеем:

f ' (х) = 5 (+)2(+) (-) = - . (6)

Сравнив (5) и (6), видим, что знак производной при переходе через х2 = 1/5 меняется с плюса на минус [функция f(х) от возрастания переходит к убыванию]. Значит, в точке x = 1/5 функция имеет максимальное значение; оно равно f(1/5) = (1/5 – 1)2 (1/5 + 1) ~ 1,1.

в) Исследуем последнее критическое значение х3 = 1. В достаточной близости слева производная в силу (6) отрицательна. Справа от х3 = 1 имеем:

f '(х) = 1/5 (+)2 (+) (+) = + . (7)

При переходе через х = 1 производная меняет знак с минуса на плюс [функция f(х) переходит от убывания к возрастанию]. Значит, при х = 1 функция имеет минимальное значение; оно равно

f (х) = (1 - 1)2(1 + 1)3 = 0.

П р и м е р 3. Найти все экстремумы функции

Р е ш е н и е. Данная функция дифференцируема при всех положительных и отрицательных значениях х, и мы имеем:

В точке же х = 0 функция f(x) не дифференцируема (ее производная бесконечна). Поэтому (см. замечание 1) имеем два критических значения: x1 = 0 и х2 = 2/5.

При х < 0 имеем:

При 0 < х < 2/5 имеем:

При х > 2/5 имеем:

Значит, в точке х = 0 функция

имеет максимальное значение f (0) = 0, а в точке x = 2/5 - минимальное значение

§ 5. Второе достаточное условие максимума и минимума

Когда знак производной вблизи критических точек (§ 4) распознается с трудом, можно пользоваться следующим достаточным условием экстремума.

Т е о р е м а 1. Пусть в точке х = а первая производная f' (х) обращается в нуль; если при этом вторая производная f " (а) отрицательна, то функция

f (х) имеет в точке х = а максимум, если положительна, то — минимум. В случае f "(а) = 0 см. теорему 2.

Второе условие следующим образом связано с первым. Будем рассматривать f "(х) как производную от f '(х). Соотношение f "(а) < 0 означает, что f '(х) убывает в точке х = а. Атак как f '(а) = 0, то f(х) положительна при х < а и отрицательна при х > а. Значит (§ 3), f(х) имеет максимум при х = а. Аналогично для случая f " (а) > 0.

П р и м е р 1. Найти максимумы и минимумы

Рис. 12 функции f (х) = ½ х4х2 + 1

Р е ш е н и е. Решив уравнение f '(х) = 2х3 — 2х = 0,

получаем критические значения хl = —1, х2 = 0, х3 = 1.

Подставив их в выражение второй производной f "(х) = 6х2 — 2 = 2 (Зх2 — 1), находим, что f "(-1)>0, f "(0)<0, f "(1)>0. Значит при х = -1 и х = 1 имеем минимум, при х = 0 - максимум (рис. 12).

Может случиться, что вместе с первой производной обращается в нуль и вторая; может обратиться в нуль и ряд последующих производных. Тогда можно воспользоваться следующим обобщением теоремы 1.

Т е о р е м а 2. Если в точке х = а, где первая производная равна нулю, ближайшая не равная нулю производная имеет четный порядок 2k, то функция f (х) имеет при х = а максимум, когда f(2k)(а) < 0, и минимум, когда f(2k) (а) > 0. Если же ближайшая не равная нулю производная имеет нечетный порядок 2k+ 1, то функция f(х) в точке а не имеет экстремума; она возрастает, когда f(2k+ 1) (а) > 0, и убывает, когда f(2k + 1) (а) < 0.

З а м е ч а н и е. Теоретически не исключено, что у функции f (х) (не являющейся постоянной величиной) все производные в точке х = а будут равняться нулю. Однако практического значения этот случай не имеет.

П р и м е р 2. Найти максимумы и минимумы функции f (х) = sin Зх - 3 sinх.

Р е ш е н и е. Имеем: f '(х) = 3 cos Зх — 3 cosх. Решая уравнение 3 cos Зх — 3 cosх = 0, найдем: х = kπ/2, где k— любое целое число.

Так как данная функция имеет период 2π, то достаточно исследовать четыре корня: х1 = 0, х2 = π/2, х3 =π, х4= /2

Берем вторую производную f "(х) = — 9 sin Зх + 3 sinх. Подставляя критические значения х1, х2, х3, х4, находим:

f "(0) = 0. f "( π/2) = 12,

f "(π) = 0. f "(/2) = - 12.

В точке х2 = π/2 ближайшая не равная нулю производная имеет второй (четный) порядок, причем f " (π/2) > 0. Значит, при х = π/2 имеем минимум. Аналогично заключаем, что при х = /2имеем максимум ибо f "(/2) < 0

Экстремальные значения будут:

f (π/2) = — 1 — 3= - 4 (минимум),

f (/2) = sin/2- 3 sin/2= 1 - (- 3) = 4 (максимум).

Чтобы исследовать критические значения х1 = 0 и х3 = π, найдем третью производную f '" (х) = — 27 cos Зх + 3 cosх;.

Имеем: f '" (0) = - 24, f '" (π) = + 24.

В точке х = 0 ближайшая не равная нулю производная имеет третий (нечетный) порядок, причем f '"(0) < 0. Значит, при х = 0 экстремума нет. Здесь функция f(х) убывает. Аналогично заключаем, что и при х =π экстремума нет; но здесь функция f (х) возрастает [ибо f '"(π) > 0].

§ 6. Разыскание наибольших и наименьших значений функции

1. Пусть по условию вопроса аргумент непрерывной функции f(x) изменяется в бесконечном промежутке, например в промежутке (a, +∞). Тогда может случиться, что среди значений функции f (х) нет наибольшего; см. рис. 13,а), где f(x) неограниченно возрастает при х→+. Если же функция f (х) обладает наибольшим значением, то последнее непременно является одним из экстремумов функции; см, рис. 13, б), где наибольшее значение функции есть f (с).

Пусть теперь по условию вопроса аргумент х изменяется в замкнутом промежутке (а, b). Тогда f (х) непременно принимает наибольшее значение.

Однако последнее может не принадлежать к экстремумам, а достигаться на одном из концов промежутка (в точке х = b1) на рис. 13, в)).

Аналогично для наименьшего значения.

1) Если исключить из рассмотрения конец х = b, то на оставшемся незамкнутом промежутке функция f (х) наибольшего значения не будет иметь.

2. Пусть требуется разыскать наибольшее (или наименьшее) значение геометрической или физической величины, подчиненной определенным условиям (см. ниже примеры). Тогда надо представить эту величину, как функцию какого-либо аргумента. Из условия задачи определяем промежуток изменения аргумента. Затем находим все критические значения аргумента, лежащие в этом промежутке, и вычисляем соответствующие значения функции, а также значения функции на концах промежутка. Из найденных значений выбираем наибольшее (наименьшее).

З а м е ч а н и е 1. Часто аргумент можно выбирать по-разному; удачный выбор может упростить решение. Учет особенностей задачи тоже может упростить решение.

Так, если внутри данного промежутка имеется лишь одно критическое значение аргумента и оно, на основании того или иного признака (см. §§ 3, 5) должно давать максимум (минимум), то и без сравнения с граничными значениями функции мы вправе заключить, что этот максимум (минимум) является искомым наибольшим (наименьшим) значением,

П р и м е р 1. Отрезок АВ = а делится на две

Рис. 14 части точкой С; на отрезках АС и СВ (рис. 14), как сторонах, строится прямоугольник ACBD. Определить наибольшее значение его площади S.

Р е ш е н и е. Примем за аргумент х длину АС; тогда

СВ = а — х и S = x (а — х).

Аргумент х непрерывной функции S изменяется в промежутке (0, а).