Смекни!
smekni.com

Аппроксимация экспериментальных зависимостей (стр. 2 из 3)

//графика линейной аппроксимации экспериментальных данных

voidGRAPH_POINTS(float,float,float,float ); //Функция выводит на экран точки //экспериментальных данных

int GRAPH_MODE(); //Функция инициализации графического режима

voidGRID(float, float);// Функция формирования координатной сетки

/*-------------------------------------------------------------------------*/

int main()

{ clrscr();

int n;

floattmpr,pwr; //текущие значения аргумента и функции

floatdiscret; //дискретность изменения аргумента

floattn0, tn; //диапазон изменения аргумента tn0 - min, tn - max

float pn; //pn-max экспериментальное значение функции

float *dp = new float [n]; //Массив значений ошибок аппроксимации

float *P = new float [n]; //Массив значений //полученный аналитическим способом

float INTG = 0; //переменная, используемая в выражении //интегральной оценки аппроксимации

float A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0;

float detA,i, detA1, detA2, detA3, A0,A2,A3;

int answer;

Вводзначенийэкспериментальныхданных*/ cout<<" Input number double values "<<endl;

cin>>n;

cout << " ENTER ARGUMENT VALUE " << endl;

float *t = new float [n]; //Массив значений аргумента (в данном случае - температура)

float *p = new float [n]; //Массив значений функции исследуемого процесса for( i=0;i<n;i++) {cout<<"EnterT"<<(i+1)<<"="; cin>>t[i]; }

cout <<" ENTER EXPERIMENTAL FNCTION VALUE"<<endl; for(i=0;i<n;i++) {cout<<"Enter P"<<(i+1)<<"="; cin>>p[i]; }

L:

cout <<" FOR DRAWING POINTS PRESS <1>&bsol;n" ;

cout <<" FOR FIND APROCSIMATION POLINOM FUNCTION INPUT <2>&bsol;n" ;

cout <<" FOR FIND APROCSIMATION LINEAR FUNCTION INPUT <4>&bsol;n" ;

cout <<" FOR FIND DRAWING POLINOM FUNCTION INPUT <3>&bsol;n" ;

cout <<" FOR FIND DRAWING LINEAR FUNCTION INPUT <5>&bsol;n" ;

cout <<" FOR EXIST INPUT <0>&bsol;n" ;

cin>>answer;

/* Графическое отображение экспериментальных данных в виде точек зависимости P = f(t) на координатной плоскости */

if (answer ==1)

{

int regimen = GRAPH_MODE();

if(regimen == 5)

{ tn0 = t[0]; tn = t[n-1];//tn-max экспериментальное значение температуры (аргумента) pn = p[n-1];//pn-max экспериментальное значение функции

GRID(tn,pn);

for(i = 0;i<n;i++)

{

tmpr= t[i];

pwr = p[i];

setbkcolor(1);

GRAPH_POINTS( tn,pn,tmpr,pwr );

} getch () ; closegraph(); // выход из графического режима

}

else

{ cout<<" Error code regimen = "<<regimen<<endl; getch(); closegraph();

} gotoL;

}

/* Расчет функции аппроксимации экспериментальных данных в виде полинома 2 - й степени */

if(answer ==2) { for( i=0;i<n;i++) { A = A + t[i]; B = B + p[i]; C = C + t[i]*p[i]; D = D + t[i]*t[i]; E = E + t[i]*t[i]*p[i]; F = F + t[i]*t[i]*t[i]; G = G + t[i]*t[i]*t[i]*t[i]; } //

cout<<"A = "<<A<<" B = "<<B<<endl; //

cout<<"C = "<<C<<" D = "<<D<<endl; //

cout<<"E = "<<E<<" F = "<<F<<endl; //

cout<<"G = "<<G<<endl; /*n,A,B,C,D,E,F,G - коэффициентымногочленовдлясистемыуравненийвида: n*(a0) + A*(a1) + D*(a2) = B A*(a0) + D*(a1) + F*(a2) = C D*(a0) + F*(a1) + G*(a2) = E */ // РешаемсистемуметодомКрамераdetA = n*D*G + A*F*D + D*A*F - D*D*D - A*A*G - n*F*F; detA1 = B*D*G + C*F*D + E*A*F - E*D*D - C*A*G - B*F*F; detA2 = n*C*G + A*E*D + D*B*F - D*C*D - A*B*G - E*F*n; detA3 = n*D*E + A*F*B + D*A*C - D*D*B - A*A*E - F*C*n; // cout << " detA = " << detA << " detA1 = " << detA1 << endl; // cout << " detA2 = " << detA2 << " detA3 = " << detA3 << endl; cout << " A0 = " << (A0 = detA1/detA) << endl; cout << " A2 = " << (A2 = detA2/detA) << endl; cout << " A3 = " << (A3 = detA3/detA) << endl;

cout << "APROCSIMATION POLINOM:" << endl; A2=A2; A3 = A3; cout << "P = (" << A0<<")+(" << (A2) << ")*T + (" << (A3) << ")*T^2" <<endl; for ( i=0; i<n; i++) { P[i] = A0 + A2*t[i] + A3*t[i]*t[i]; cout<<"P["<<i<<"]="<<P[i]<<" "; } cout<<"&bsol;n";

cout << " THE ABSOLUTE & RELATIVE MISTAKES OF APROCTIMATION &bsol;n"; for ( i=0; i<n; i++) { dp[i] = (P[i]-p[i]); cout<< "dP["<<i<<"]="<<(fabs(dp[i]))<<" dP(%)="<<(100*fabs(dp[i])/p[i])<<endl; }

cout <<" INTEGRAL LEVEL OF APROCTIMATION IS:&bsol;n" ;

for ( i=0; i<n; i++) { INTG = INTG + (dp[i])*dp[i]; } float ITG = sqrt(INTG/(n+1)); cout<<"ITG = "<<ITG<<"&bsol;n"; //интегральнаяоценкааппроксимацииgetch();

goto L; }

/* Графическое отображение, полученной зависимости P = f(t) в виде полинома 2 степени, на координатной плоскости */

if(answer == 3) {

int regimen = GRAPH_MODE();

if(regimen == 5)

{ tn0 = t[0]; tn = t[n-1];//tn-max экспериментальное значение температуры (аргумента) pn = p[n-1];//pn-max экспериментальное значение функции

GRID(tn,pn);

setbkcolor(1);

GrafikPolinom(A0, A2, A3,tn0,tn,pn );

for(i = 0;i<n;i++)

{

tmpr= t[i];

pwr = p[i];

GRAPH_POINTS( tn,pn,tmpr,pwr );

} getch () ; closegraph(); // выход из графического режима

}

else

{ cout<<" Error code regimen = "<<regimen<<endl; cout << "Dont find driver or driver damaged&bsol;n" ; /*Вэтомместе cделатьвозвратвглавноеменю*/ getch(); closegraph();

}

goto L;

}

/*-------------------------------------------------------------------------*/ /* Расчет линейной функции аппроксимации экспериментальных данных */ cout<<" II. LINEARAPROCTIMATION " <<endl; floatR = 0, R2 = 0, B0, B1; floatSCp = 0, Cpi = 0, detB, detB1, detB2; float* dCp = newfloat [n];; float* ACp = newfloat [n];; floatINTGL = 0; if(answer == 4) { for ( i=0;i<n;i++) { R = R+t[i]; SCp = SCp + p[i]; R2 = R2 + t[i]*t[i]; Cpi = Cpi + p[i]*t[i]; } // cout << " R =" << R << " SCp =" << SCp << endl; // cout << " R2 =" << R2 << " Cpi =" << Cpi << endl; /*n, R, SCp, R2, Cpi - коэффициенты в уравнениях для системы вида (А0)*n + (A1)*R= SCp(A0)*R + (A1)*R2 = Cpi*/ detB = n*R2 - R*R; detB1 = SCp*R2 - R*Cpi; detB2 = n*Cpi - R*SCp; // cout<<"detB = "<<detB<<" detB1 = "<<detB1<<"detB2 = "<<detB2<<"&bsol;n"; B0 = detB1/detB; B1 = detB2/detB; // cout << " B0 =" << B0 << endl; // cout << " B1 =" << B1 << endl; cout << " APROCTIMATIONLINEARPOLINOM" << endl; cout<<"F =("<<B0<<") + ("<<B1<<")*T" << endl; for (i = 0; i<n;i++) { ACp[i] = B0 + B1* t[i]; cout <<"ACp["<<i<<"]=" <<ACp[i]<<endl; } for ( i = 0; i<n;i++) { dCp[i] = ACp[i] - p[i]; cout<< "dCp["<<i<<"]="<<(fabs(dCp[i]))<<" dCp(%)="<<(100*fabs(dCp[i])/p[i])<<endl; } cout <<" INTEGRALLEVELOFAPROCTIMATIONIS:&bsol;n" ; for ( i=0; i<n; i++) { INTGL = INTGL + (dCp[i])*(dCp[i]); } floatITGL = sqrt(INTGL/(n+1)); cout<<"ITGL = "<<ITGL<<"&bsol;n"; cout<<" "<<"&bsol;n"; getch(); goto L; }

Графическое отображение, полученной зависимости P = f(t) в виде линейной функции аппроксимации на, координатной плоскости */

if(answer==5)

{

int regimen = GRAPH_MODE();

if(regimen == 5)

{ tn0 = t[0]; tn = t[n-1]; tn = t[n-1]; pn = p[n-1]; GRID(tn,pn);

setbkcolor(1);

GrafikLinear( B0,B1,tn0,tn,pn );

for(i=0;i<n;i++)

{tmpr = t[i]; pwr = p[i]; GRAPH_POINTS(tn,pn,tmpr,pwr);

} getch () ; closegraph(); // выход из графического режима

}

else

{ cout << " Error code regimen = "<<regimen<<endl; cout << "Dont find driver or driver damaged&bsol;n" ; getch();

} goto L;

}

return 0;

}

* Функция вывода на координатную плоскость графика функции 2-й степени */

void GrafikPolinom(float A0, float A2, float A3,float tn0,float tn, float pn )

{

float x,dx; // аргумент и его приращение

float xl,x2; // диапазон изменения аргумента

float y; // значение функции

float mx,my; // масштаб по X и Y - кол-во точек экрана, соответствующих // единице по осям координат

int x0,y0; // начало осей координат

float px,py; // координаты точки графика на экране

x0 = 50;

y0 = 400;

mx = 630/(2*tn);

my = 470/(2*pn);

// осикоординат

line(10,y0,630,y0);

line(x0,10,x0,470);

// график

xl = tn0;

x2 = tn;

dx = 0.01;

x = xl;

while ( x < x2 )

{

y =A3*x*x + A2*x+A0; // функция

px = x0 + x*mx;

py = y0 - y*my;

putpixel(px,py, WHITE);

x += dx;

}}

int GRAPH_MODE()

{

int grdriver = DETECT; // драйвер

int grmode; // режим

int errorcode; // кодошибки

initgraph(&grdriver, &grmode, PATHTODRIVER);

errorcode = graphresult();

if (errorcode != grOk) // ошибка инициализации графического режима

{

printf("ERROR: dont find driver or driver damaged &bsol;n", errorcode);

puts("PRESS <Enter>");

getch();

return(-10);

}

else

{ return(5);

}}

/* Функциявыводанакоординатнуюплоскостьграфикалинейнойфункции*/ void GrafikLinear(float B0, float B1,float tn0, float tn, float pn ) {

float x,dx; // аргумент и его приращение

float xl,x2; // диапазон изменения аргумента

float y; // значение функции

float mx,my; // масштаб по X и Y - кол-во точек экрана, соответствующих // единице по осям координат

int x0,y0; // начало осей координат

float px,py; // координаты точки графика на экране

x0 = 50;

y0 = 400;

mx = 630/(2*tn);

my = 470/(2*pn);

// осикоординат

line(10,y0,630,y0);

line(x0,10,x0,470);

// график

xl = tn0;

x2 = tn;

dx = 0.01;

x = xl;

while ( x < x2 )

{

y = B1*x+B0; // линейная функция

px = x0 + x*mx;

py = y0 - y*my;

putpixel(px,py, WHITE);

x += dx;

}}

/* Функциявыводаточекэкспериментальнойзависимостинаэкран*/ void GRAPH_POINTS(float tn,float pn,float tmpr,float pwr )

{

float x; // аргумент

float y; // значение функции

float mx,my; // масштаб по X и Y - кол-во точек экрана, соответствующее // единице по осям координат

int x0 = 50;

int y0 = 400;

mx = 630/(2*tn); //tn-max экспериментальное значение температуры (аргумента)

my = 470/(2*pn); //pn-max экспериментальное значение функции

y = y0 - pwr*my ;

x = x0 + tmpr*mx ;

setcolor(13);

circle(x,y,2);

}

/* ФункцияформированиякоординатнойсеткиирасчетамасштабапоX иY*/ void GRID(float tn, float pn)

{

int x0,y0; // координаты начала координатных осей

int dx,dy; // шаг координатной сетки (в пикселях)

int h,w; // высота и ширина области вывода координатной сетки int x,y;

float lx,ly; float dlx,dly; char st [8];

// метки линий сетки по X и Y

// шаг меток линий сетки по X и Y

// изображение метки линии сетки

x0 = 50; y0 = 400; // оси начинаются в точке (50,400)

dx = 40; dy = 40; // шаг координатной сетки 40 пикселей

dlx =1; // шаг меток оси X метками будут: 1, 2, 3 ...

dly =1; // шаг меток оси Y метками будут: 1, 2, 3 ...

h = 360; w = 560;

lx = 0; ly =0; //в начало координат ставятся метки 0

cout<<" MX = 1 : "<< 2*tn/14 <<"&bsol;n"; //масштаб по Х

cout<<" MY = 1 : "<< 2*pn/9 <<"&bsol;n"; //масштабпо Y

// засечки, сетка и оцифровка

int x = x0;

do

{

// засечка

sprintf(st,"%2.1f",lx);

outtextxy(x-8,y0+5,st);

lx += dlx;

// линиясетки

setlinestyle (DOTTED_LINE, 0, 1);

line(x,y0-3,x,y0-h);

x += dx; } while (x < x0+w);

// засечки, сетка и оцифровка по оси Y

int y = y0;

do

{

// оцифровка

sprintf(st,"%2.1f",ly) ;

outtextxy(x0-40,y, st) ;

ly += dly;

// линиясетки

setlinestyle(DOTTED_LINE, 0, 1);

line(x0+3,y,x0+w,y) ;

setlinestyle(SOLID_LINE, 0, 1);

y -= dy; } while (y > y0-h);

} ;

Результаты тестирования

Для проверки правильности вычисления аналитической формулы 2 – й степени, которая аппроксимирует экспериментальную (табличную), зависимость, выведем на экран:

- значения определителей [detA, detA1, detA2, detA3] полученных при решении системы линейных уравнений и значения коэффициентов [A0, A2, A3] в аналитической формуле, рассчитанные программой при выборе аппроксимирующего многочлена 2 – й степени;

- вспомогательные данные [A, B, C, D, E, F, G] необходимые для вычисления уравнения функции аппроксимации экспериментальных данных 2 – й степени;

При тестировании получены следующие величины вышеперечисленных значений:

A = 284;

B = 97744,099609;