//графика линейной аппроксимации экспериментальных данных
voidGRAPH_POINTS(float,float,float,float ); //Функция выводит на экран точки //экспериментальных данных
int GRAPH_MODE(); //Функция инициализации графического режима
voidGRID(float, float);// Функция формирования координатной сетки
/*-------------------------------------------------------------------------*/
int main()
{ clrscr();
int n;
floattmpr,pwr; //текущие значения аргумента и функции
floatdiscret; //дискретность изменения аргумента
floattn0, tn; //диапазон изменения аргумента tn0 - min, tn - max
float pn; //pn-max экспериментальное значение функции
float *dp = new float [n]; //Массив значений ошибок аппроксимации
float *P = new float [n]; //Массив значений //полученный аналитическим способом
float INTG = 0; //переменная, используемая в выражении //интегральной оценки аппроксимации
float A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0;
float detA,i, detA1, detA2, detA3, A0,A2,A3;
int answer;
Вводзначенийэкспериментальныхданных*/ cout<<" Input number double values "<<endl;
cin>>n;
cout << " ENTER ARGUMENT VALUE " << endl;
float *t = new float [n]; //Массив значений аргумента (в данном случае - температура)
float *p = new float [n]; //Массив значений функции исследуемого процесса for( i=0;i<n;i++) {cout<<"EnterT"<<(i+1)<<"="; cin>>t[i]; }
cout <<" ENTER EXPERIMENTAL FNCTION VALUE"<<endl; for(i=0;i<n;i++) {cout<<"Enter P"<<(i+1)<<"="; cin>>p[i]; }
L:
cout <<" FOR DRAWING POINTS PRESS <1>\n" ;
cout <<" FOR FIND APROCSIMATION POLINOM FUNCTION INPUT <2>\n" ;
cout <<" FOR FIND APROCSIMATION LINEAR FUNCTION INPUT <4>\n" ;
cout <<" FOR FIND DRAWING POLINOM FUNCTION INPUT <3>\n" ;
cout <<" FOR FIND DRAWING LINEAR FUNCTION INPUT <5>\n" ;
cout <<" FOR EXIST INPUT <0>\n" ;
cin>>answer;
/* Графическое отображение экспериментальных данных в виде точек зависимости P = f(t) на координатной плоскости */
if (answer ==1)
{
int regimen = GRAPH_MODE();
if(regimen == 5)
{ tn0 = t[0]; tn = t[n-1];//tn-max экспериментальное значение температуры (аргумента) pn = p[n-1];//pn-max экспериментальное значение функции
GRID(tn,pn);
for(i = 0;i<n;i++)
{
tmpr= t[i];
pwr = p[i];
setbkcolor(1);
GRAPH_POINTS( tn,pn,tmpr,pwr );
} getch () ; closegraph(); // выход из графического режима
}
else
{ cout<<" Error code regimen = "<<regimen<<endl; getch(); closegraph();
} gotoL;
}
/* Расчет функции аппроксимации экспериментальных данных в виде полинома 2 - й степени */
if(answer ==2) { for( i=0;i<n;i++) { A = A + t[i]; B = B + p[i]; C = C + t[i]*p[i]; D = D + t[i]*t[i]; E = E + t[i]*t[i]*p[i]; F = F + t[i]*t[i]*t[i]; G = G + t[i]*t[i]*t[i]*t[i]; } //
cout<<"A = "<<A<<" B = "<<B<<endl; //
cout<<"C = "<<C<<" D = "<<D<<endl; //
cout<<"E = "<<E<<" F = "<<F<<endl; //
cout<<"G = "<<G<<endl; /*n,A,B,C,D,E,F,G - коэффициентымногочленовдлясистемыуравненийвида: n*(a0) + A*(a1) + D*(a2) = B A*(a0) + D*(a1) + F*(a2) = C D*(a0) + F*(a1) + G*(a2) = E */ // РешаемсистемуметодомКрамераdetA = n*D*G + A*F*D + D*A*F - D*D*D - A*A*G - n*F*F; detA1 = B*D*G + C*F*D + E*A*F - E*D*D - C*A*G - B*F*F; detA2 = n*C*G + A*E*D + D*B*F - D*C*D - A*B*G - E*F*n; detA3 = n*D*E + A*F*B + D*A*C - D*D*B - A*A*E - F*C*n; // cout << " detA = " << detA << " detA1 = " << detA1 << endl; // cout << " detA2 = " << detA2 << " detA3 = " << detA3 << endl; cout << " A0 = " << (A0 = detA1/detA) << endl; cout << " A2 = " << (A2 = detA2/detA) << endl; cout << " A3 = " << (A3 = detA3/detA) << endl;
cout << "APROCSIMATION POLINOM:" << endl; A2=A2; A3 = A3; cout << "P = (" << A0<<")+(" << (A2) << ")*T + (" << (A3) << ")*T^2" <<endl; for ( i=0; i<n; i++) { P[i] = A0 + A2*t[i] + A3*t[i]*t[i]; cout<<"P["<<i<<"]="<<P[i]<<" "; } cout<<"\n";
cout << " THE ABSOLUTE & RELATIVE MISTAKES OF APROCTIMATION \n"; for ( i=0; i<n; i++) { dp[i] = (P[i]-p[i]); cout<< "dP["<<i<<"]="<<(fabs(dp[i]))<<" dP(%)="<<(100*fabs(dp[i])/p[i])<<endl; }
cout <<" INTEGRAL LEVEL OF APROCTIMATION IS:\n" ;
for ( i=0; i<n; i++) { INTG = INTG + (dp[i])*dp[i]; } float ITG = sqrt(INTG/(n+1)); cout<<"ITG = "<<ITG<<"\n"; //интегральнаяоценкааппроксимацииgetch();
goto L; }
/* Графическое отображение, полученной зависимости P = f(t) в виде полинома 2 степени, на координатной плоскости */
if(answer == 3) {
int regimen = GRAPH_MODE();
if(regimen == 5)
{ tn0 = t[0]; tn = t[n-1];//tn-max экспериментальное значение температуры (аргумента) pn = p[n-1];//pn-max экспериментальное значение функции
GRID(tn,pn);
setbkcolor(1);
GrafikPolinom(A0, A2, A3,tn0,tn,pn );
for(i = 0;i<n;i++)
{
tmpr= t[i];
pwr = p[i];
GRAPH_POINTS( tn,pn,tmpr,pwr );
} getch () ; closegraph(); // выход из графического режима
}
else
{ cout<<" Error code regimen = "<<regimen<<endl; cout << "Dont find driver or driver damaged\n" ; /*Вэтомместе cделатьвозвратвглавноеменю*/ getch(); closegraph();
}
goto L;
}
/*-------------------------------------------------------------------------*/ /* Расчет линейной функции аппроксимации экспериментальных данных */ cout<<" II. LINEARAPROCTIMATION " <<endl; floatR = 0, R2 = 0, B0, B1; floatSCp = 0, Cpi = 0, detB, detB1, detB2; float* dCp = newfloat [n];; float* ACp = newfloat [n];; floatINTGL = 0; if(answer == 4) { for ( i=0;i<n;i++) { R = R+t[i]; SCp = SCp + p[i]; R2 = R2 + t[i]*t[i]; Cpi = Cpi + p[i]*t[i]; } // cout << " R =" << R << " SCp =" << SCp << endl; // cout << " R2 =" << R2 << " Cpi =" << Cpi << endl; /*n, R, SCp, R2, Cpi - коэффициенты в уравнениях для системы вида (А0)*n + (A1)*R= SCp(A0)*R + (A1)*R2 = Cpi*/ detB = n*R2 - R*R; detB1 = SCp*R2 - R*Cpi; detB2 = n*Cpi - R*SCp; // cout<<"detB = "<<detB<<" detB1 = "<<detB1<<"detB2 = "<<detB2<<"\n"; B0 = detB1/detB; B1 = detB2/detB; // cout << " B0 =" << B0 << endl; // cout << " B1 =" << B1 << endl; cout << " APROCTIMATIONLINEARPOLINOM" << endl; cout<<"F =("<<B0<<") + ("<<B1<<")*T" << endl; for (i = 0; i<n;i++) { ACp[i] = B0 + B1* t[i]; cout <<"ACp["<<i<<"]=" <<ACp[i]<<endl; } for ( i = 0; i<n;i++) { dCp[i] = ACp[i] - p[i]; cout<< "dCp["<<i<<"]="<<(fabs(dCp[i]))<<" dCp(%)="<<(100*fabs(dCp[i])/p[i])<<endl; } cout <<" INTEGRALLEVELOFAPROCTIMATIONIS:\n" ; for ( i=0; i<n; i++) { INTGL = INTGL + (dCp[i])*(dCp[i]); } floatITGL = sqrt(INTGL/(n+1)); cout<<"ITGL = "<<ITGL<<"\n"; cout<<" "<<"\n"; getch(); goto L; }
Графическое отображение, полученной зависимости P = f(t) в виде линейной функции аппроксимации на, координатной плоскости */
if(answer==5)
{
int regimen = GRAPH_MODE();
if(regimen == 5)
{ tn0 = t[0]; tn = t[n-1]; tn = t[n-1]; pn = p[n-1]; GRID(tn,pn);
setbkcolor(1);
GrafikLinear( B0,B1,tn0,tn,pn );
for(i=0;i<n;i++)
{tmpr = t[i]; pwr = p[i]; GRAPH_POINTS(tn,pn,tmpr,pwr);
} getch () ; closegraph(); // выход из графического режима
}
else
{ cout << " Error code regimen = "<<regimen<<endl; cout << "Dont find driver or driver damaged\n" ; getch();
} goto L;
}
return 0;
}
* Функция вывода на координатную плоскость графика функции 2-й степени */
void GrafikPolinom(float A0, float A2, float A3,float tn0,float tn, float pn )
{
float x,dx; // аргумент и его приращение
float xl,x2; // диапазон изменения аргумента
float y; // значение функции
float mx,my; // масштаб по X и Y - кол-во точек экрана, соответствующих // единице по осям координат
int x0,y0; // начало осей координат
float px,py; // координаты точки графика на экране
x0 = 50;
y0 = 400;
mx = 630/(2*tn);
my = 470/(2*pn);
// осикоординат
line(10,y0,630,y0);
line(x0,10,x0,470);
// график
xl = tn0;
x2 = tn;
dx = 0.01;
x = xl;
while ( x < x2 )
{
y =A3*x*x + A2*x+A0; // функция
px = x0 + x*mx;
py = y0 - y*my;
putpixel(px,py, WHITE);
x += dx;
}}
int GRAPH_MODE()
{
int grdriver = DETECT; // драйвер
int grmode; // режим
int errorcode; // кодошибки
initgraph(&grdriver, &grmode, PATHTODRIVER);
errorcode = graphresult();
if (errorcode != grOk) // ошибка инициализации графического режима
{
printf("ERROR: dont find driver or driver damaged \n", errorcode);
puts("PRESS <Enter>");
getch();
return(-10);
}
else
{ return(5);
}}
/* Функциявыводанакоординатнуюплоскостьграфикалинейнойфункции*/ void GrafikLinear(float B0, float B1,float tn0, float tn, float pn ) {
float x,dx; // аргумент и его приращение
float xl,x2; // диапазон изменения аргумента
float y; // значение функции
float mx,my; // масштаб по X и Y - кол-во точек экрана, соответствующих // единице по осям координат
int x0,y0; // начало осей координат
float px,py; // координаты точки графика на экране
x0 = 50;
y0 = 400;
mx = 630/(2*tn);
my = 470/(2*pn);
// осикоординат
line(10,y0,630,y0);
line(x0,10,x0,470);
// график
xl = tn0;
x2 = tn;
dx = 0.01;
x = xl;
while ( x < x2 )
{
y = B1*x+B0; // линейная функция
px = x0 + x*mx;
py = y0 - y*my;
putpixel(px,py, WHITE);
x += dx;
}}
/* Функциявыводаточекэкспериментальнойзависимостинаэкран*/ void GRAPH_POINTS(float tn,float pn,float tmpr,float pwr )
{
float x; // аргумент
float y; // значение функции
float mx,my; // масштаб по X и Y - кол-во точек экрана, соответствующее // единице по осям координат
int x0 = 50;
int y0 = 400;
mx = 630/(2*tn); //tn-max экспериментальное значение температуры (аргумента)
my = 470/(2*pn); //pn-max экспериментальное значение функции
y = y0 - pwr*my ;
x = x0 + tmpr*mx ;
setcolor(13);
circle(x,y,2);
}
/* ФункцияформированиякоординатнойсеткиирасчетамасштабапоX иY*/ void GRID(float tn, float pn)
{
int x0,y0; // координаты начала координатных осей
int dx,dy; // шаг координатной сетки (в пикселях)
int h,w; // высота и ширина области вывода координатной сетки int x,y;
float lx,ly; float dlx,dly; char st [8];
// метки линий сетки по X и Y
// шаг меток линий сетки по X и Y
// изображение метки линии сетки
x0 = 50; y0 = 400; // оси начинаются в точке (50,400)
dx = 40; dy = 40; // шаг координатной сетки 40 пикселей
dlx =1; // шаг меток оси X метками будут: 1, 2, 3 ...
dly =1; // шаг меток оси Y метками будут: 1, 2, 3 ...
h = 360; w = 560;
lx = 0; ly =0; //в начало координат ставятся метки 0
cout<<" MX = 1 : "<< 2*tn/14 <<"\n"; //масштаб по Х
cout<<" MY = 1 : "<< 2*pn/9 <<"\n"; //масштабпо Y
// засечки, сетка и оцифровка
int x = x0;
do
{
// засечка
sprintf(st,"%2.1f",lx);
outtextxy(x-8,y0+5,st);
lx += dlx;
// линиясетки
setlinestyle (DOTTED_LINE, 0, 1);
line(x,y0-3,x,y0-h);
x += dx; } while (x < x0+w);
// засечки, сетка и оцифровка по оси Y
int y = y0;
do
{
// оцифровка
sprintf(st,"%2.1f",ly) ;
outtextxy(x0-40,y, st) ;
ly += dly;
// линиясетки
setlinestyle(DOTTED_LINE, 0, 1);
line(x0+3,y,x0+w,y) ;
setlinestyle(SOLID_LINE, 0, 1);
y -= dy; } while (y > y0-h);
} ;
Результаты тестирования
Для проверки правильности вычисления аналитической формулы 2 – й степени, которая аппроксимирует экспериментальную (табличную), зависимость, выведем на экран:
- значения определителей [detA, detA1, detA2, detA3] полученных при решении системы линейных уравнений и значения коэффициентов [A0, A2, A3] в аналитической формуле, рассчитанные программой при выборе аппроксимирующего многочлена 2 – й степени;
- вспомогательные данные [A, B, C, D, E, F, G] необходимые для вычисления уравнения функции аппроксимации экспериментальных данных 2 – й степени;
При тестировании получены следующие величины вышеперечисленных значений:
A = 284;
B = 97744,099609;