Задание 1
Данные давления водорода Н2 на линии насыщения приведены в таблице. Сделать аппроксимацию экспериментальных данных в виде степенной функции и многочлена первой степени. Произвести сравнительный анализ ошибки аппроксимации полученной двумя функциями.
Таблица 1
Ts,0К | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
Pмм рт. ст. | 360,3 | 509,5 | 699,2 | 935,3 | 1223.7 | 1570,5 | 1981,8 | 2463,8 |
Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Теоретические сведения
Пусть, в результате эксперимента получена зависимость.
Необходимо найти аналитическую формулу f =
Выберем зависимость
В выражении (1) коэффициенты
(2)
В соответствии с методом наименьших квадратов (МНК) наилучшими коэффициентами зависимости (1) будут такие, для которых сумма квадратов отклонений будет минимальной.
Используя необходимые условия существования экстремума для функций нескольких переменных
Из условия (4) получим систему линейных алгебраических уравнений:
Решив систему (5) найдем коэффициенты
Эффективным методом решения систем линейных алгебраических уравнений является матричный метод. Сущность его состоит в следующем.
Пусть А — матрица коэффициентов системы уравнений, X— вектор неизвестных, В — вектор правых частей системы уравнений. Тогда решение системы уравнений в матричной форме будет иметь вид:
Х = А -1 В.
Правило Крамера
Если ранг матрицы совместной системы равен числу ее неизвестных, то система является определенной. Если число неизвестных системы совпадает с числом уравнений (m = n) и матрица системы невырожденная (detA≠ 0), то система имеет единственное решение, которое находится по правилу Крамера:
В этих формулах ∆ = detА — определитель системы, а ∆k— определитель, полученный из определителя системы заменой k-гoстолбца столбцом свободных членов (k = 1, 2,..., n).
Решение системы трех линейных уравнений с тремя неизвестными можно выразить через определители:
Информационное обеспечение
Зависимость давления P водорода Н2 при различных температурах на линии насыщения приведены в таблице (1).
Для проведения анализа исходных данных с целью выбора вида аппроксимирующего многочлена построим график функции, заданной в табл.1. График приведен на рис.1.
Графическое отображение точек экспериментальных данных
Рис. 1.Экспериментальная зависимость P=f(T)
В результате анализа данных выберем в качестве аппроксимирующего многочлена параболу, заданную уравнением P2(x)=a0+a1x+a2x2.
Для определения коэффициентов a0, a1, a2 запишем систему уравнений вида
При составлении системы создадим вспомогательную таблицу данных (таблица 2).
Используя данные таблицы 2, систему уравнений (5) записываем в виде
В результате решения системы методом Крамера получаем следующие значения определителей:
detA = 56448;
detA1 = 1435933397;
detA2 = -94279012,8;
detA3 = 1564382,4;
Вычислив определители, рассчитываем значения коэффициентов:
a0 = detA1/ detA;
a1= detA2/detA;
a2 = detA3/ detA;
a0= 25438,1625;
a1= -1670,19226;
a2= 27,71369048.
Таким образом, искомый аппроксимирующий многочлен имеет вид:
Полученная аналитическая зависимость (6) обобщает экспериментальные данные табл.01.
Для оценки погрешности полученной зависимости составим таблицу значений P. Для этого определим давление P по формуле (6). Результаты внесем в таблицу 2.
Таблица 2
T | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
P | 370,8291668 | 502,0267858 | 688,6518 | 930,7042 | 1228,1839 | 1581,091 | 1989,4256 | 2453,188 |
Для оценки точности параболической аппроксимации сравниваем значения Р из табл.01 и табл.2. Модуль разности соответствующих значений представляет DP-погрешность аппроксимации, значения которой представлены в табл.3. В таблице приведена также относительная погрешность dР, равная отношению DР к Р.
Таблица 3
Т | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
DР | 10,529 | 7,4732 | 0,5482 | 4,59583 | 4,4839 | 10,591 | 7,625 | 10,6125 |
dP,% | 2,8393578 | 1,4886087 | 1,5317 | 0,4938 | 0,36509 | 0,6699 | 0,38331 | 0,4326 |
Сравнительный анализ погрешностей показывает, что полученная аналитическая зависимость удовлетворительно обобщает исходные экспериментальные данные.
Для интегральной оценки аппроксимации можно использовать формулу:
На рис. 2 приведены два графика, один из которых построен по данным аппроксимации (табл. 2), а второй - по исходным данным (табл.01).
Сравнивая эти графики, можно также отметить удовлетворительную сходимость теоретических и экспериментальных данных.
Выберем в качестве аппроксимирующего многочлена линейную функцию.
Аппроксимируем данную табличную зависимость многочленом первой степени P1(x)=a0+a1x
Для определения коэффициентов а0 , а1 необходимо составить систему уравнений
Подставив данные таблицы в систему уравнений получим:
Находим а0 и а1 методом Крамера:
а0 = -9343,52, а1 = 297,4798
Следовательно, искомый аппроксимирующий многочлен имеет вид
P= ─ 9342,52 + 297,4798T(7)
Формула (7) является аналитической зависимостью, обобщающей экспериментальные данные табл. 01.
Для оценки линейной аппроксимации необходимо сравнить значения yi из табл. 4 со значениями, полученными по формуле (7) для всех точек (i=1, 2, ..., 8). Результаты сравнения представлены в таблице 5.
Таблица 5
Проанализировав табл.5 можно сделать вывод, формула (7) не является корректной аналитической зависимостью, обобщающей экспериментальные данные табл. 01.
На рис.3 приведены график функции (7) и исходные экспериментальные данные. Сравнительный анализ показывает неудовлетворительную сходимость теоретических и экспериментальных данных.
Рис.5.3. График линейного аппроксимирующего многочлена и исходные данные.
Текстпрограммы
#include<iostream.h>
#include<math.h>
#include<conio.h>
#include<graphics.h>
#include<stdio.h>
#define PATHTODRIVER "c:\egavga.bgi"
void GrafikPolinom(float, float, float, float, float, float );//Функция //построенияграфикаполиномиальнойаппроксимацииэкспериментальныхданных
void GrafikLinear(float,float,float,float,float);//Функцияпостроения