3.
.4.
.5.
.6.
.7.
.8.
.9.
.10.
.Задача 16. Найти наибольшее и наименьшее значение функции
в данной замкнутой области.1.
в прямоугольнике2.
в треугольнике, ограниченном осями координат и прямой3.
в прямоугольнике4.
в области, ограниченной параболой и осью абсцисс.5.
в квадрате6.
в треугольнике, ограниченном осями координат и прямой7.
в треугольнике, ограниченном осями координат и прямой8.
в треугольнике, ограниченном осями координат и прямой9.
в области, ограниченной параболой и осью абсцисс.10.
в области, ограниченной параболой и осью абсцисс.Основная
1. М.С. Красс, Б.П. Чупрынов. Основы математики и ее приложение в экономическом образовании: Учебник. – 4-е изд., исп. – М.: Дело, 2003.
2. М.С. Красс, Б.П. Чупрынов. Математика для экономических специальностей: Учебник. – 4-е изд., исп. – М.: Дело, 2003.
3. М.С. Красс, Б.П. Чупрынов. Математика для экономического бакалавриата. Учебник. – 4-е изд., исп. – М.: Дело, 2005.
4. Высшая математика для экономистов. Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; Под ред. проф. Н.Ш. Кремера, - 2-е изд., перераб. и доп. – М: ЮНИТИ, 2003.
5. Кремер Н.Ш, Путко Б.А., Тришин И.М., Фридман М.Н.. Высшая математика для экономических специальностей. Учебник и Практикум (части I и II) / Под ред. проф. Н.Ш. Кремера, - 2-е изд., перераб. и доп. – М: Высшее образование, 2007. – 893с. – (Основы наук)
6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М. высшая школа. 1999.
Дополнительная
1. И.И. Баврин, В.Л. Матросов. Высшая математика. «Гуманитарный издательский центр Владос», 2002.
2. И.А. Зайцев. Высшая математика. «Высшая школа», 1998.
3. А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандра. Математика в экономике / в двух частях/. М. Финансы и статистика. 1999.