3. Предел произведения нескольких функций равен произведению пределов этих функций:
4. Предел степени равен степени предела:
5. Предел частного равен частному пределов, если предел делителя существует:
6. Первый замечательный предел.
Следствия:
7. Второй замечательный предел:
Следствия:
Эквивалентные бесконечно малые величины при
Вычисление пределов.
При вычислении пределов используют основные теоремы о пределах, свойства непрерывных функций и правила, вытекающие из этих теорем и свойств.
Правило 1. Чтобы найти предел в точке
Пример 2. Найти
Правило 2. Если при отыскании предела дроби предел знаменателя равен нулю, а предел числителя отличен от нуля, то предел такой функции равен
Пример 3. Найти
Правило 3. Если при отыскании предела дроби предел знаменателя равен
Пример 4. Найти
Часто подстановка предельного значения аргумента приводит к неопределенным выражениям вида
Нахождение предела функции в этих случаях называется раскрытием неопределенности. Для раскрытия неопределенности приходится, прежде чем перейти к пределу, проводить преобразование данного выражения. Для раскрытия неопределенностей используют различные приемы.
Правило 4. Неопределенность вида
Пример 5.
Пример 6.
Правило 5. Если подпредельное выражение содержит тригонометрические функции, тогда, чтобы раскрыть неопределенность вида
Пример 7.
Пример 8.
Правило 6. Чтобы раскрыть неопределенность вида
Возможны результаты:
1) искомый предел равен отношению коэффициентов при старших степенях аргумента числителя и знаменателя, если эти степени одинаковы;
2) предел равен бесконечности, если степень аргумента числителя выше степени аргумента знаменателя;
3) предел равен нулю, если степень аргумента числителя ниже степени аргумента знаменателя.
Пример 9.
а)
т.к.
Степени равны, значит, предел равен отношению коэффициентов при старших степенях, т.е.
б)
Степень числителя
в)
Степень числителя 1, знаменателя –
Правило 7. Чтобы раскрыть неопределенность вида
Пример 10.
Правило 8. Чтобы раскрыть неопределенность вида
Можно доказать, что
Пример 11.
Пример 12.
Пример 13.
Правило 9. При раскрытии неопределенностей, подпредельная функция которых содержит б.м.в., необходимо заменить пределы этих б.м. на пределы б.м., эквивалентных им.
Пример 14.
Пример 15.
Правило 10. Правило Лопиталя (см. 2.6).
Функция
Эквивалентные условия:
1.
2.
3.
4.
Классификация точек разрыва:
разрыв I рода
- устранимый – односторонние пределы существуют и равны;
- неустранимый (скачок) – односторонние пределы не равны;
разрыв II рода: предел функции в точке не существует.
Пример 16. Установить характер разрыва функции
а)
при
б)
по сравнению с заданием (а) функция доопределена в точке
в)
При
Т.к. один из односторонних пределов бесконечен, то