Теорема 3. Пусть (а1 а2 … аn), (b1 b2 … bn) – одномонотонные последовательности и ( )перестановка чисел b1 b2 … bn. Тогда
.
Доказательство.
Действительно, если последовательность (
) отличается от (b1 b2 … bn) то найдется пара чисел k, l (1 k<l n) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа и и , мы увеличим всю сумму, а значит и всю сумму . То есть ,так как
.Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.
Теорема доказана.
Следствие.
Для любого n
N верно.
Доказательство.
Но последовательности (а1 а2 … аn) и (
) не являются одномонотонными, и поэтому мы не можем воспользоваться теоремой 3.Однако эти последовательности противомонотонны: числа в последовательностях расположены в обратном порядке – самому большому по величине соответствует самое маленькое, а самому маленькому соответствует самое большое. А из противомонотонных последовательностей сделать одномонотонные очень просто – достаточно все числа второй линии взять со знаком минус. В данном случае одномонотонными являются последовательности
(а1 а2 … аn) и (
)Поэтому
Отсюда и следует искомое неравенство
Следствие
Для любого n
N верно(Неравенство Чебышева).
Доказательство.
В силу теоремы 3 справедливы следующие nнеравенства
Значит
В этих неравенствах левая часть не изменяется, а в правой части элементы второй строки меняются циклически.
Складываем все и получаем
Что и требовалось доказать
Упражнение №1.
Пусть a и b и c – положительные вещественныечисла.
Докажите неравенство.
a3+b3+c3+d3
a2b+b2c+c2d+d2a.Доказательство.
Заметим, прежде всего, что
a3+b3+c3+d3=
, a2b+b2c+c2d+d2a= .А так как последовательности
(a2, b2, c2, d3), (a, b , c, d)
одномонотонны, то
.А это значит, что a3+b3+c3+d3
a2b+b2c+c2d+d2a.Что и требовалось доказать.
Доказательство этого неравенства с помощью одномонотонных последовательностей я не могу сравнить с другим доказательством, так как доказать другим способом это неравенство я не смогла.
2.5 Случай с n последовательностями из n переменных
Рассмотрим одномонотонные последовательность (а1, а2, …аn), (b1, b2,…bn), …(d1, d2,…, dn).
Если
=a1b1, и =а1b1+а2b2, и =а1b1+а2b2…anbn,то
= а1b1…d1+а2b2…d2+ …+anbn…dnТеорема 4. Рассмотрим одномонотонные последовательности (а1, а2, …аn), (b 1, b2,…bn), …, (d1, d2,…,dn). Тогда
.Доказательство.
Действительно, если последовательность (a1, а2, …аn), (b'1, b'2,…b'n), …, (d'1, d'2,…,d'n) отличается от (а1, а2, …аn), (b 1, b2,…bn), …, (d1, d2,…,dn), то найдутся переменные k, l (1
k<l n) такие, что последовательности (ak, al) и (bk, bl) …(dk, dl) не одномонотонны. Значит, поменяв местами числа , , ak, al … dk, dl мы увеличим всю сумму, а значит и всю сумму . Тоесть
,так как
.Очевидно, что за конечное число попарных перестановок элементов n-ой строки можно получить одномонотонную последовательность.
Теорема доказана.
Пример
Упражнение 1
Пусть а1, а2, …аn - положительные вещественные числа.
Докажите, что
Это неравенство называется неравенством Коши о среднем арифметическом и среднем геометрическом. Докажем его двумя способами
Доказательство.
Перепишем его в виде:
, введя новые переменные
Имеем
Если сравнить эти два доказательства неравенства, можно заметить, что доказательство с помощью одномонотонных последовательностей гораздо легче в сравнении с доказательством Коши.
неравенство одномонотонный последовательность коши
Заключение
Работая по данной теме, я узнала новый способ доказательства неравенств, вспомнила уже изученные способы доказательства неравенств. Все упражнения в работе я решала сама.
Список использованной литературы
1. Большой справочник школьника. 5 – 11 кл. М. Дрофа, 2001 г.
2. В.В. Зайцев, В.В. Рыжков, М.И. Сканави. Элементарная математика (повторительный курс). М., Наука. 1976 г.
3. Р.Б. Алексеев, Л.Д. Курлядчик. Нетрадиционные способы доказательства традиционных неравенств. /Математика в школе. 1991 г. №4
4. Л. Пинтер, Й. Хегедыш. Упорядоченные наборы чисел и неравенства. /Квант. 1985 г. №12.