Пользуясь этим определением, перейдем к самому свойству.
Свойство 3. Если в определителе -го порядка некоторая строка ( ) является линейной комбинацией двух строк ( ) и ( ) с коэффициентами и , то , где - определитель, у которого -ая строка равна ( ), а все остальные - те же, что и у , а - определитель, у которого -ая строка равна ( ), а все остальные - те же, что и у .
Для доказательства разложим каждый из определителей по
-ой строке. Очевидно, что у всех разложений миноры соответствующих элементов будут одинаковы. Вычислим :Итак, свойство доказано. Очевидно, оно справедливо и для столбцов.
Приведенные три свойства называются основными. Остальные являются их следствиями.
Свойство 4. Умножение всех элементов некоторой строки или столбца определителя на число равносильно умножению определителя на число .
Для доказательства положим в свойстве 3
, тогда получим . Значит, общий множитель всех элементов некоторого ряда можно выносить за определитель.Свойство 5. Если все элементы некоторой строки или столбца определителя равны 0, то и сам определитель равен 0.
Для доказательства разложим определитель по нулевому ряду.
Свойство 6. Определитель с двумя равными строками или столбцами равен 0.
Действительно, переставив местами равные строки или столбцы, получим тот же определитель, но по свойству 2 его знак изменится на противоположный. Итак, с одной стороны
, а с другой . Следовательно, .Свойство 7. Если соответствующие элементы двух строк или столбцов определителя пропорциональны, то определитель равен нулю.
Действительно, согласно свойству 4 общий множитель можно выносить за определитель, и мы получим определитель с двумя равными строками, который по свойству 6 равен нулю.
Свойство 8. Если к элементам некоторой строки или столбца определителя прибавить соответствующие элементы другой строки или столбца, умноженные на произвольный множитель , то величина определителя не изменится.
Доказательство. Рассмотрим определитель
. Прибавим к элементам второй строки элементы первой с коэффициентом : .Тогда, по свойству 3 получим:
.После перечисления всех свойств определителей введем еще одно определение.
Определение 3. Алгебраическим дополнением данного элемента определителя -го порядка называется число, равное , которое обозначается .
Значит, алгебраическое дополнение отличается от соответствующего минора только лишь знаком. Теперь величину определителя можно вычислить с помощью формул:
.Пользуясь свойствами, любой определитель можно вычислить не на основании основного правила, а предварительно упростив его (приводя, например, к треугольному виду).
1. Артамонов Вячеслав Введение в высшую алгебру и аналитическую геометрию. Изд-во: Факториал, Факториал Пресс, 2007. - 128с.
2. Бугров Я.С., Никольский С.М. ВЫСШАЯ МАТЕМАТИКА В 3-х томах Том 1 Элементы линейной алгебры и аналитической геометрии 8-е издание. Издательство: ДРОФА, 2006. - 284с.
3. Рябушко А.П., Бархатов В.В., Державец В.В., Юруть И.Е. Индивидуальные задания по высшей математике. В 4 частях. Часть 1. Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной. Минск: Высшая школа, 2007.
4. Черненко В.Д. Высшая математика в примерах и задачах. В трех томах. ПОЛИТЕХНИКА, 2003.
5. Шипачев В.С. Высшая математика изд.7 Изд-во: ВЫСШАЯ ШКОЛА, 2005. - 479с.