Смекни!
smekni.com

Основная теорема алгебры (стр. 1 из 4)

Федеральное агентство по образованию Российской Федерации

САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО

Кафедра компьютерной алгебры и теории чисел

Основная теорема алгебры

Курсовая работа

студента 1 курса 121 группы механико-математического факультета

Батура Ирина Сергеевна

Научный руководитель Е.В. КОРОБЧЕНКО, ассистент

Зав. кафедрой В.Н.КУЗНЕЦОВ, д.т.н., профессор

САРАТОВ

2009 год


СОДЕРЖАНИЕ

1. Введение

2. Основные определения, используемые в курсовой работе

3. Элементы теории пределов для комплексных чисел

4. Доказательство основной теоремы

5. Список используемой литературы


1. ВВЕДЕНИЕ

Данная работа посвящена Основной теореме Алгебры, изучению существования корней в поле

. Как предположение эта теорема впервые встречается у немецкого математика Питера Роуте(1617г.). Д’Аламбер первым в 1746г. опубликовал доказательство этой теоремы. Его доказательство основывалось на лемме. Доказательство это было бы совершенно строгим, если бы Д’Аламбер мог доказать, что-то на комплексной плоскости значение модуля многочлена достигает наименьшего значения. Во второй половине 18 века появляются доказательства Эйлера, Лапласа, Лагранжа и других. Во всех этих доказательствах предполагается заранее, что какие-то "идеальные" корни многочлена существуют, а затем доказывается, что, по крайней мере, один из них является комплексным числом. Со времен доказательства теоремы в алгебре было открыто очень много нового, поэтому сегодня "основной" эту теорему назвать уже нельзя: это название теперь является историческим.

Целью моей работы является выявления, что поле

комплексных чисел алгебраически замкнуто. Для доказательства Основной теоремы Алгебры я использовала ряд лемм: лемма Даламбера и лемма о достижении точной нижней грани значений.

При написании работы мною была использована следующая литература: Д.К.Фадеев "Лекции по алгебре", Л.Д.Кудрявцев "Курс математического анализа". А.Г.Курош "Курс высшей алгебры".


2. Основные определения, используемые в курсовой работе

Множества, удовлетворяющие требованиям:1-операция сложения,2-операция умножения,3-связь операций сложения и умножения, и содержащие хотя бы один элемент, отличный от нуля, называется полями.

Множество комплексных чисел

можно определить как множество упорядоченных пар
действительных чисел,
,
, в котором введены операции сложения и умножения согласно следующему определению:

В результате этого определения множество указанных пар превращается в поле, т.е. удовлетворяет условиям 1,2,3. Полученное таким образом поле, называется полем комплексных чисел.

Последовательность комплексных чисел - это функция, определенная на множестве натуральных чисел и имеющая своими значениями комплексные числа.

Последовательность

называется подпоследовательностью
, если для любого k существует такое натуральное
, что
=
, причем
Б
тогда и только тогда, когда
.

Комплексное число– расширение множества вещественных чисел, обычно обозначается

. Любое комплексное число может быть представлено как формальная сумма
, где x и y— вещественные числа, i— мнимая единица, то есть число, удовлетворяющее уравнению
.

Вещественное число (действительное число)– любое положительное число, отрицательное число или нуль.

Функция– 1) Зависимая переменная величина; 2) Соответствие

между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение величины y (зависимой переменной или функции в значении 1).

Теорема Больцано-Вейерштрасса: из любой ограниченной последовательности можно извлечь сходящуюся подпоследовательность.

Последовательность называется ограниченной на множестве Е, если существует такая постоянная М>0, что для всех

и всех
выполняется неравенства

Последовательность сходится к функции f равномерно на множестве Е, если для любого

существует такой номер
, что если
, то для всех
выполняется неравенство
. Последовательность называется равномерно сходящейся на множестве Е, если существует функция f, к которой она равномерно сходится на Е.

3. Элементы теории пределов для комплексных чисел

В моей работе полиномы рассматриваются только над полями

и
как функции от комплексной или вещественной переменной, так что моя работа является скорее главой математического анализа, а не алгебры, хотя теорема о существовании корня у любого отличного от константы полинома с комплексными коэффициентами (т.е. установление алгебраической замкнутости поля
) носит название основной теоремы алгебры.

Определение: Пусть задана последовательность комплексных чисел

. Число
называется ее пределом, если для любого действительного числа
существует такой номер
, что при
выполняется неравенство
. В этом случае пишут lim
, а=lim
, b=lim
. Предельное соотношение lim
=c равносильно соотношению
, ибо

max

Последовательность

такая, что
R, при некотором R, называется ограниченной.

Для вещественных переменных известная теорема Больцано-Вейерштрасса: из любой ограниченной последовательности можно извлечь сходящуюся подпоследовательность. То же самое верно и для последовательностей, составленных из комплексных чисел.

Действительно, пусть

ограниченная последовательность, т.е.
, тогда
, так что
есть ограниченная последовательность вещественных чисел. Из нее можно выбрать сходящуюся подпоследовательность
. Рассмотрим соответствующую подпоследовательность мнимых частей
. Она ограничена, и из нее можно извлечь сходящуюся подпоследовательность
.