так как эта линейная форма есть инвариант. Тогда из (1.3) следует
Поскольку немой индекс может быть обозначен любой буквой, то эту систему уравнений можно записать в виде
Если это соотношение справедливо для всех значений переменных
Это преобразование, очевидно, отлично от преобразования, задаваемого формулой (2.6). Объект первого порядка, составляющие которого преобразуются по этому закону, называется ковариантным вектором.
Таким образом, у нас есть два типа тензоров первого порядка, и мы условимся различать их с помощью положения индекса. Если - тензор контравариантен, мы используем верхний индекс, если же он ковариантен, то нижний. Другими словами, верхний индекс обозначает контравариантностъ, а нижний индекс — ковариантность.
Объекты, которые зависят от двух индексов, называются объектами второго порядка. Из того, что индексы бывают верхние и нижние, следует, что объекты второго порядка могут быть трех типов:
Легко видеть, что в этом случае каждый объект имеет 9 составляющих.
Аналогично можно получить объекты третьего порядка, которые будут зависеть от трех индексов и могут принадлежать к любому из четырех типов:
Здесь каждый объект содержит
Для законченности этой последовательности мы назовем объект а, не имеющий индексов, объектом нулевого порядка.Если этот объект имеет одно и то же значение и в новых переменных
где
Мы взяли число измерений равным трем лишь для определенности. Все, что было сказано выше, применимо также к любому числу измерений, если условиться, что число значений, пробегаемых индексом, равно числу измерений. Например, если число измерений равно четырем, следует считать, что индексы могут пробегать значения от 1 до 4, а не от 1 до 3, как предполагалось выше.
§ 3. Общее определение тензоров
Векторы, ковекторы, линейные операторы, и билинейные формы - примеры тензоров. Они являются геометрическими объектами, которые представляются в числовой форме, после того, как выбран базис в пространстве. Это числовое представление является своим для каждого из них: векторы и ковекторы представляются одномерными массивами, линейные операторы и квадратичные формы - двумерными массивами. Кроме количества индексов, имеет значение также и их расположение. Координаты вектора нумеруются одним верхним индексом, который называется контравариантным индексом. Координаты ковектора нумеруются одним нижним индексом, который называется ковариантным индексом. В матрице билинейной формы мы используем два нижних индекса; поэтому билинейные формы называют дважды-ковариантными тензорами. Линейные операторы - тензоры смешанного типа; их элементы нумеруются одним нижним и одним верхним индексами. Число индексов и их положения определяют правила преобразования, т.е. то как компоненты каждого конкретного тензора ведут себя при смене базиса. В общем случае, любой тензор представляет собой многомерный массив с определенным числом верхних и нижних индексов. Давайте обозначать число этих индексов через r и s. Тогда получится тензор типа (r,s); или иногда используется термин валентность. Тензор типа (r,s), или тензор валентности (r,s) - это r-раз контравариантный и s-раз ковариантный тензор.
Все это была терминология; теперь давайте перейдем к точному определению.
Оно базируется на следующих общих формулах преобразования:
Определение 1. Геометрический объект X, который в каждом базисе представляется (r + s)-мерным массивом
Индексы
Остальные индексы
При выражении
Подобным же образом, каждый нижний индекс обслуживается матрицей обратного перехода T и тоже порождает одно суммирование в формуле (1):
Формулы (3.3) и (3.4) совпадают с (3.1), они записаны для того, чтобы сделать более понятным то, как записывается формула (3.1). Итак, определение тензоров дано.
§ 4. Скалярное произведение и метрический тензор
Ковекторы, линейные операторы и билинейные формы, те, что мы рассматривали выше, все это были искусственно построенные тензоры. Однако, есть некоторое количество тензоров естественного происхождения. Давайте вспомним, что мы живем в метрическом мире. Мы можем измерять расстояния между точками (следовательно, мы можем измерять длины векторов) и измерять углы между двумя направлениями в пространстве. Поэтому для любых двух векторов x и y мы можем определить их скалярное произведение:
(x,y) = |x||y| cos(φ), (4.1)
где φ - угол между векторами x и y. Это естественное скалярное произведение, порожденное нашей способностью измерять длины или, вернее сказать, тем, что понятие длины дано нам в ощущениях в том мире, где мы живем.
Вспомним следующие свойства естественного скалярного произведения (4.1):
(1) (x+y, z) = (x, z)+(y, z);
(2) (αx, y) = α(x, y);
(3) (x, y+z) = (x, y)+(x, z);
(4) (x, αy) = α(x, y);
(5) (x, y) = (y, x);
(6) (x, x)≥0 и (x, x) = 0 влечетx = 0.
Обратите внимание, что первые четыре свойства скалярного произведения
(4.1) очень похожи на свойства квадратичной формы. Это не случайное совпадение.
Давайте рассмотрим два произвольных вектора x и yвместе с их разложениями в некотором базисе
Подставим (4.2) в формулу (4.1) и, используя четыре свойства(1)–(4) из шести упомянутых в упражнении, выведем следующую формулу для скалярного произведения векторов x и y:
Обозначим
Рассмотрим другой базис