Смекни!
smekni.com

Элементы тензороного исчисления (стр. 3 из 7)

докажем, что матрицы

и
являются компонентами геометрического объекта, подчиняющимися преобразованиям

и

при замене базиса. Таким образом мы докажем, что эта матрица Грама

(4.5)

задает тензор типа (0,2). Это очень важный тензор; его называют метрическим тензором. Оно описывает не только скалярное произведения в форме (4.4), но и всю геометрию нашего пространства. Свидетельства этого факта приводятся ниже.

Матрица (4.5) симметрична из-за свойства (5). Теперь, сравнивая формулу (4.4) с формулой

и помня о тензорной природе матрицы (4.5), мы приходим к выводу, что скалярное произведение – это симметричная билинейная форма:

(x, y) = g(x,y). (4.6)

Квадратичная форма, соответствующая (4.6), очень проста: f(x) = g(x,x) =

. Обратная матрица для (4.5) обозначается тем же самым символом g, но она имеет два верхних индекса:
. Это определяет тензор типа (2,0). Такой тензор называется дуальным метрическим тензором.

§5. Действия с тензорами

1) Линейные операции.

Так как

-пространство тензоров ранга р - является линейным пространством, то в нем определены действия сложения и умножения на число:

(5.1)

Если тензоры представлены своими компонентами в одном и том же базисе, то линейной комбинации тензоров соответствует та же линейная комбинация их компонент.

2) Тензорное умножение.

В отличие от линейных операций, это действие совершается с произвольными тензорами, не обязательно имеющими одинаковый ранг.

Если X- тензор ранга р, а Y- тензор ранга q, то результатом будет тензор ранга p+q, обозначаемый XY:


(5.2)

Тензорное произведение произвольного числа тензоров обладает свойством ассоциативности.

Для того чтобы перейти к другим действиям с тензорами, нам понадобится следующее определение.

Определение. Тензоры, представимые в виде abch, называются разложимыми.

Не каждый тензор является разложимым, но любой тензор может быть представлен в виде линейной комбинации разложимых.

3) Перестановка (i,j).

Перестановкой T(i,j) называется линейная функция, действующая из

в
(т.е. не меняющая ранг тензора) и состоящая для разложимых тензоров во взаимной перестановке векторов, стоящих на i-м и j-м местах:

(5.3)

Например,

На произвольные тензоры операция перестановки распространяется по линейности, например:

Для тензоров второго ранга возможна только одна перестановка - Т(1,2), обозначаемая просто буквой Т:


Для произвольного тензора второго ранга Xимеем:

Из полученного соотношения для

видно, что матрица компонент тензора
в простом базисе является транспонированной матрицей компонент тензора X в том же базисе. Именно поэтому операция перестановки тензоров второго ранга называется еще транспонированием.

4) Свертывание (i,j).

Свертыванием

называется линейная функция, действующая из
в
(понижающая ранг тензора на 2) и состоящая для разложимых тензоров в скалярном перемножении вектора, занимающего i-е место, на вектор, занимающий j-е место:

(5.4)

Например,

.

На произвольные тензоры операция свертывания переносится по линейности, например:


Для тензоров второго ранга возможно только одно свертывание -

, обозначаемое просто
:

Скаляр

называется следом тензора второго ранга X.

Если тензор записан в смешанных компонентах, то

(п - размерность пространства Эп). Таким образом, след тензора второго ранга совпадает со следом матрицы его смешанных компонент.

Для матриц ко- или контравариантных компонент предыдущее утверждение, вообще говоря, не верно:

5) Простое умножение.

Простым умножением тензора X ранга р на тензор Y ранга q называется операция, состоящая в свертывании (р,р + 1) тензорного произведения XY и обозначаемая

:

(5.5)

Другими словами, простое умножение сводится к скалярному перемножению последних векторов в разложении тензора X на первые векторы в разложении тензора Y. Для разложимых тензоров:

Для произвольных тензоров:

В результате простого умножения тензора ранга р на тензор ранга qполучается тензор ранга р+q-2. В частности, результатом простого умножения двух тензоров второго ранга будет тензор второго ранга.

6) Косое умножение.

Это действие имеет смысл только для тензоров, построенных на основе трехмерного векторного пространства

. Как уже упоминалось, в
определено векторное произведение векторов

Пусть

Операция косого умножения, обозначаемая
, приводит к тензору ранга р+q-1 и состоит в векторном перемножении последних векторов в разложении тензора X на первые векторы в разложении тензора Y:

(5.6)

Очевидно, что в случае двух векторов операция косого умножения совпадает с векторным умножением.

Для тензоров второго ранга с использованием векторного умножения строится еще одна операция - векторный инвариант. Это унарная (т.е. имеющая один аргумент) операция, применительно к тензору Tобозначаемая как Тх, определяется для разложимых тензоров следующим образом

,

и распространяется на произвольные тензоры по линейности:

7) Полное умножение.

Пусть

, причем р>q.

Операцию полного умножения, обозначаемую

, определим сначала для разложимых тензоров следующим образом: при полном умножении (разложимого) тензора X на тензор Y производится скалярное умножение последнего вектора в разложении тензора X на последний вектор в разложении тензора Y, затем скалярное умножение предпоследних векторов в разложениях этих тензоров и т.д., пока не будут исчерпаны все векторы в разложении тензора Y:

(5.7)

Для произвольных тензоров полное умножение производится по правилу "многочлен на многочлен". Результатом полного умножения тензора ранга р на тензор ранга qявляется тензор ранга р -q.

Если X и Y - тензоры одинакового ранга, то полное умножение

совпадает с введенным ранее скалярным произведением в пространстве
.