Если теперь обобщить это на произвольный элемент поверхности, то мы получим
или в еще более общей форме:
(8.15)Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы
и полностью описать внутреннее напряжение.Уравнение (8.15) говорит, что тензор
связывает силу с единичным вектором n. Но поскольку n и - векторы, то компоненты при изменении осей координат должны преобразовываться как тензор. Так что действительно тензор.Можно также доказать, что
- симметричный тензор. Для этого нужно обратить внимание на силы, действующие на маленький кубик в материале. Возьмем кубик, грани которого параллельны осям координат, и посмотрим на его разрез (рис.4). Если допустить, что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметим теперь, что на кубик не должен действовать никакой момент сил, иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению ( ) на единичную длину ребра куба, а поскольку полный момент равен нулю, то должно быть равно , и тензор напряжений, таким образом, оказывается симметричным.рис.4
Благодаря этой симметрии тензора
его можно тоже описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никаких сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательному). Таким образом, для гидростатического давления тензор диагоналей, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать (8.16)Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компоненту
как функцию положения. Тензор напряжений, таким образом, является полем. Мы уже имели примеры скалярных полей, подобных температуре Т(х, у, z), и векторных полей, подобных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задаваемого в каждой точке пространства девятью числами, из которых для симметричного тензора реально остается только шесть. Полное описание внутренних сил в произвольном твердом теле требует знания шести функций координат х, у и z.Заключение
Тензорное исчисление, математическая теория, изучающая величины особого рода - тензоры, их свойства и правила действий над ними. Тензорное исчисление является развитием и обобщением векторного исчисления и теории матриц. Тензорное исчисление широко применяется в дифференциальной геометрии, теории римановых пространств, теории относительности, механике, электродинамике и других областях науки. Для описания многих физических и геометрических фактов обычно вводится та или иная система координат, что позволяет описывать различные объекты при помощи одного или нескольких чисел, а соотношения между объектами - равенствами, связывающими эти числа или системы чисел.
Материал курсовой работы может быть использован как при изучении соответствующих разделов дифференциальной геометрии, так и для курса механики. В данной работе достаточно полно изложены основные моменты теории, они иллюстрируются задачами, которые позволяют глубже понять рассматриваемые вопросы. Приведенный список литературы позволяет при необходимости рассмотреть некоторые более сложные моменты теории тензорного исчисления.
Таким образом, в данной курсовой работе полностью раскрыты поставленные задачи.
Литература
1. Шарипов Р.А.. Быстрое введение в тензорный анализ. – Уфа: БГУ, 2004.-50с.
2. Мак-Коннел А.Дж.. Введение в тензорный анализ с приложениями. – Москва: ФМ, 1963.- 411с.
3. Зубов Л.М., Карякин М.И.. Элементы тензорного исчисления. – Ростов: РГУ, 2003.- 108с.
4. Рашевский П.К.. Риманова геометрия и тензорный анализ.– Москва: Наука, 1967.-664с.
5. Акивис М.А., Гольдберг В.В.. Тензорное исчисление.– Москва: Наука, 1969.-352с.
6. Кочин Н.Е.. Векторное исчисление и начала тензорного исчисление.– Москва: Наука, 1965.-424с.
7. Борисенко А.И., Тарапов И.Е.. Векторный анализ и начала тензорного исчисление.– Москва: Высшая школа, 1966.-252с.