Пример 3.14 Рассмотрим функцию
на отрезке . Поскольку и - числа разных знаков, то функция обращается в 0 в некоторой точке интервала . Это означает, что уравнение имеет корень .Рис.3.17. Графическое представление корня уравнения
Доказанная теорема фактически даёт нам способ нахождения корня
, хотя бы приближённого, с любой заданной наперёд степенью точности. Это- метод деления отрезка пополам, описанный при доказательстве теоремы. Более подробно с этим и другими, более эффективными, способами приближённого нахождения корня мы познакомимся ниже, после того, как изучим понятие и свойства производной.Заметим, что теорема не утверждает, что если её условия выполнены, то корень
- единственный. Как показывает следующий рисунок, корней может быть и больше одного (на рисунке их 3).Рис.3.18. Несколько корней функции, принимающей значения разных знаков в концах отрезка
Однако, если функция монотонно возрастает или монотонно убывает на отрезке, в концах которого принимает значения разных знаков, то корень- единственный, так как строго монотонная функция каждое своё значение принимает ровно в одной точке, в том числе и значение 0.
Рис.3.19.Монотонная функция не может иметь более одного корня
Непосредственным следствием теоремы о корне непрерывной функции является следующая теорема, которая и сама по себе имеет очень важное значение в математическом анализе.
Теорема 3.7 (о промежуточном значении непрерывной функции) Пусть функция
непрерывна на отрезке и (будем для определённости считать, что ). Пусть - некоторое число, лежащее между и . Тогда существует такая точка , что .Рис.3.20.Непрерывная функция принимает любое промежуточное значение
Доказательство. Рассмотрим вспомогательную функцию
, где . Тогда и . Функция , очевидно, непрерывна, и по предыдущей теореме существует такая точка , что . Но это равенство означает, что .Заметим, что если функция не является непрерывной, то она может принимать не все промежуточные значения. Например, функция Хевисайда
(см. пример 3.13) принимает значения , , но нигде, в том числе и на интервале , не принимает, скажем, промежуточного значения . Дело в том, что функция Хевисайда имеет разрыв в точке , лежащей как раз в интервале .Для дальнейшего изучения свойств функций, непрерывных на отрезке, нам понадобится следующее тонкое свойство системы вещественных чисел (мы уже упоминали его в главе 2 в связи с теоремой о пределе монотонно возрастающей ограниченной функции): для любого ограниченного снизу множества
(то есть такого, что при всех и некотором ; число называется нижней гранью множества ) имеется точная нижняя грань , то есть наибольшее из чисел , таких что при всех Аналогично, если множество ограничено сверху, то оно имеет точную верхнюю грань : это наименьшая из верхних граней (для которых при всех ).Рис.3.21.Нижняя и верхняя грани ограниченного множества
Если
, то существует невозрастающая последовательность точек , которая стремится к . Точно так же если , то существует неубывающая последовательность точек , которая стремится к .Если точка
принадлежит множеству , то является наименьшим элементом этого множества: ; аналогично, если , то .Кроме того, для дальнейшего нам понадобится следующая
Лемма 3.1 Пусть
- непрерывная функция на отрезке , и множество тех точек , в которых (или , или ) не пусто. Тогда в множестве имеется наименьшее значение , такое что при всех .