Смекни!
smekni.com

Нестандартные задачи по математике (стр. 6 из 9)

1) Б и Г, 2) В и Д , 3) Б и В, 4) А и Г, 5) Г и Д.

Один прогноз оказался полностью неверным, в остальных была правильно названа только одна из команд-финалисток. Какие команды вышли в финал?

3.4. Три товарища – Владимир, Игорь и Сергей – окончили один и тот же педагогический институт и преподают математику, физику и литературу в школах Тулы, Рязани и Ярославля. Владимир работает не в Рязани, Игорь – не в Туле. Рязанец преподает не физику, Игорь – не математику, туляк преподает литературу. Какой предмет и в каком городе преподает каждый из них?

3.5. Среди офицеров А, Б, В и Г – майор, капитан и два лейтенанта. А и один из лейтенантов – танкисты, Б и капитан – артиллеристы, А младше по званию, чем В. Определите род войск и воинское звание каждого из них.

3.6. В стране Радонежии некоторые города связаны между собой авиалиниями. Из столицы выходит 1985 авиалиний, из города Дальнего одна, а из остальных городов - по 20 линий. Докажите, что из столицы можно добраться до Дальнего.

Решение.

Рассмотрим множество городов, до которых можно добраться из столицы. Это граф: его вершины - города, ребра - авиалинии, их соединяющие. Из каждой вершины графа выходит столько ребер, сколько всего авиалиний выходит из соответствующего города. Граф содержит нечетную вершину - столицу. Поскольку число нечетных вершин в графе четно, в нем есть еще одна нечетная вершина. Этой вершиной может быть только город Дальний.

Задачи, при решении которых используются вершины, стороны и диагонали многоугольника

3.7. Можно ли организовать футбольный турнир девяти команд так, чтобы каждая команда провела по четыре встречи?

Решение

Изобразим каждую команду точкой, а проведенную ею встречу – отрезком, исходящим из этой точки. Девять точек лучше расположить так, чтобы при последовательном соединении их отрезками образовался выпуклый девятиугольник.

Задача сводиться к следующей: можно ли девять точек соединить отрезками так, чтобы из каждой точки выходили четыре отрезка? Другими словами, существует ли граф с деятью вершинами, у которого степень каждой вершины равна 4?

Прежде всего проведем все стороны девятиугольника; они будут означать, что каждая команда провела две встречи.

Для того чтобы получить еще две встречи будем, например, соединять все вершины диагоналями через одну ( рис. 19 ). ( Целесообразно для всех держаться одной и той же системы проведения из них отрезков, иначе решение усложнится. ) После этого все получается.

Ответ: можно.

3.8. Можно ли провести футбольный турнир восьми команд так, чтобы каждая команда провела: а) по четыре встречи; б) по пять встреч

3.9. Можно ли провести футбольный турнир семи команд так, чтобы каждая команда провела по три встречи?

Решение.

Попытки решить эту задачу тем же методом, что и предыдущие задачи, приводят к неудаче. Возникает подозрение, что провести турнир таким образом нельзя.

Для того чтобы доказать нашу гипотезу, попробуем вместо рисунка подсчитать общее число встреч, которые надо провести командам. Оно равно 7 (3/2). Но это число не является целым.

Ответ: нельзя.

3.10. Докажите что общее число вершин графа, которые имеют нечетную степень четно.

3.11. В трех вершинах правильного пятиугольника расположили по фишке. Разрешается передвигать их по диагонали в любую свободную вершину. Можно ли таким образом добиться того, чтобы одна из фишек вернулась на свое место, а две другие поменялись местами?

3.12. Дан правильный 45-и угольник. Можно ли так расставить в его вершинах цифры от 0 до 9 так, чтобы для любой пары различных цифр нашлась сторона, концы которой занумерованы этими цифрами.

Указание.

Рассмотреть полный граф, вершины которого суть цифры от 0 до 9. Задача сводится к его обходу.

3.13. Докажите что общее число вершин графа, которые имеют нечетную степень четно.

Решение.

Обозначим число вершин графа, имеющих нечетную степень, через k, а степени таких вершин – соответственно через а1, а2,…, аk. Кроме того, у графа могут быть вершины с четной степенью; обозначим степени этих вершин соответственно через b1, b2,…, bn.

Допустим, что число k нечетно. Подсчитаем общее число ребер графа. Оно равно [(а1 + а2 +…+ аk) + (b1 + b2 +…+ bn)] /2.

Сумма в первых круглых скобках числителя полученной дроби есть число нечетное, как сумма нечетного числа нечетных слагаемых, а сумма во вторых скобках число четное. Но тогда весь числитель – число нечетное, а значит дробь не является натуральным числом. Мы пришли к противоречию.

3.14. Можно ли 15 телефонов соединить между собой так, чтобы каждый из них был связан ровно с 11 другими?

3.15. Девять школьников,разъезжаясь на каникулы, договорились, что каждый из них пошлет открытки пятерым из остальных. Может ли оказаться, что каждый из них получит открытки именно от тех друзей, которым напишет сам?

3.16. В шахматном турнире в один круг участвуют 17 шахматистов. Верно ли, что в любой момент турнира найдется шахматист, сыгравший к этому моменту четное число партий ( может быть ни одной )?

Задачи на обведение контура фигуры непрерывной линией

3.17. В 18 веке город Кенигсберг ( ныне Калининград в составе нашей страны ) был расположен на берегах реки и двух островах. Различные части города были соединены семью мостами (рис. 20). Можно ли обойти все эти мосты так, чтобы побывать на каждом из них ровно один раз?

Это и есть задача Эйлера о кенигсбергских мостах, о которой упоминалось в начале параграфа.

Решение.

Обозначим различные части города буквами А, В, С и К и изобразим их точками. Мосты изобразим линиями, соединяющими эти точки. Получим граф ( рис. 21).

Задача сводится к следующей: существует ли путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз?

Рассмотрим два случая.

1) Предположим, что существует такой замкнутый путь. Тогда степень каждой вершины графа должна быть четной, так как, входя в какую-либо вершину, мы затем должны из нее выйти, причем по другому ребру. Что касается начала пути, то после выхода из него мы должны в конце концов в него и вернуться, поскольку путь замкнутый. Однако на рисунке 20 нет ни одной вершины, степень которой была бы четной. Значит этот случай невозможен.

2)Пусть существует такой незамкнутый путь; например, пусть он начинается в вершине А, а заканчивается в С.

Тогда из вершин А и С должно выходить уже нечетное число ребер, а из промежуточных вершин В и К – по-прежнему четное число. Но на рисунке степени вершин В и К нечетны. Следовательно, и этот случай отпадает.

Ответ: нельзя.

Хотя рассуждение проведенное при решении задачи 3.13, выполнено для частного случая, оно носит общий характер:

1)если существует замкнутый путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз, то степени всех вершин графа четные,

2)если существует аналогичный незамкнутый путь, то степени начала и конца пути нечетные, а остальных вершин – четные.

Эйлер в своей статье доказал и обратные утверждения. Пусть граф связный, т. е. любые две его вершины можно связать путем, проходящим по его ребрам. Тогда путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз, существует лишь в следующих двух случаях:

1) когда степень каждой вершины четная (в этом случае путь замкнут),

2) когда граф имеет только две вершины А и В с нечетной степенью (тогда путь не замкнут и имеет своими концами вершины А и В ) .

3.18.Можно ли обвести карандашом, не отрывая его от бумаги и не проводя по одной линии дважды:

а) квадрат с диагоналями,

б)правильный пятиугольник с диагоналями?

3.19. Можно ли из проволоки длиной 12 дм изготовить каркас куба с ребром длины 1 дм, не ломая проволоку на части?

3.20. Можно ли граф, изображенный на рисунке 22, обвести карандашом, не отрывая его от бумаги и не проходя ни одной линии дважды? Если можно, то как?

3.21. В точке А расположен гараж для снегоочистительной машины (рис. 23). Водителю машины было поручено убрать снег с улиц части города изображенной на рисунке. Может ли он закончить свою работу на том перекрестке, где находится гараж, если по каждой улице своего участка города водитель будет проезжать только один раз?

3.22. В марсианском метро 100 станций. От любой станции до любой Другой можно проехать. Забастовочный комитет хочет закрыть проезд через одну из станций так, чтобы между всеми остальными стан­циями был возможен проезд. Докажите, что такая станция найдется.

3.23. В тридевятом царстве каждые два города соединены дорогой с односторонним движением. Докажите, что существует город, из которого в любой другой можно проехать не более чем по двум дорогам.

3.24. В городе на каждом перекрестке сходится четное число улиц. Известно, что с любой улицы города можно проехать на любую другую. Докажите, что все улицы города можно объехать, побывав на каждой по одному разу.

Разные задачи на графы.

3.25. В углах шахматной доски 3х3 стоят 4 коня: 2 белых (в соседних углах) и два черных. Можно ли за несколько ходов (по шахматным правилам) поставить коней так, чтобы во всех соседних углах стояли кони разного цвета?

Решение.

Отметим центры клеток доски и соединим отрезками пары отмеченных точек, если из одной в другую можно пройти ходом коня. Мы получим граф, содержащий «цикл» из восьми точек и одну изолированную точку (рис. 24). Перемещение коней по доске соответствует движению по ребрам этого цикла. Ясно, что при движении по циклу нельзя изменить порядок следования коней.

3.26. Выпишите в ряд цифры от 1 до 9 так, чтобы число, составленное из двух соседних цифр, делилось либо на 7, либо на 13.