“...Несравнимыми величинами я называю такие, одна из которых никогда не сможет превзойти другую, на какое конечное число ее бы ни помножили, так же как это понимает Евклид...”.
Приведем еще несколько цитат (на этот раз отсутствующих в монографии Робинсона).
“...новый Анализ бесконечных рассматривает не линии и не числа, но величины вообще, как это делает обыкновенная Алгебра. Этот Анализ содержит новый алгоритм, т. е. новый способ складывать, вычитать, умножать, делить, извлекать корни, соответствующий несравнимым величинам, т. е. тем, которые бесконечно велики или бесконечно малы в сравнении с другими...”
Методы Лейбница господствовали в Европе в течение более чем 50 лет. Однако во второй половине XVIII столетия начались поиски альтернативных путей построения анализа. Лагранж предлагал рассматривать разложения функций в степенные ряды, предполагая, что любая или почти любая функция может быть разложена в такой ряд. Даламбер предлагал понятие предела в качестве исходного для построения математического анализа. Он писал:
“Говорят, что одна величина лявляется пределом другой, если вторая может приблизиться к первой ближе, чем на любую заданную величину... Теория пределов является основанием подлинной Метафизики дифференциального исчисления... В дифференциальном исчислении речь идет не о бесконечно малых величинах, как это обычно утверждают; речь идет лишь о переделах конечных величин... Термином “бесконечно малая» пользуются лишь как сокращением …»
Эти высказывания даламбера выглядят как изложение современной точки зрения на пределе. Можно было бы предположить, что с этого времени понятие бесконечно малых будет полностью устранено. Это, однако, не так. Коши, рассматриваемый обычно как основатель современного подхода к построению анализа, использует понятие бесконечно малой величины. Пытаясь объяснить в современных терминах, что Коши называет “величиной”, можно предположить, что величина — это функция с действительными значениями, определенная на упорядоченном множестве без наибольшего элемента. Коши, однако, отнюдь не сводит величины к функциям. Наоборот, он говорит о функции как о соотношении, связывающем две величины. В его изложении бесконечно малые и пределы фигурируют как равноправные компоненты обоснования анализа.
2. РОБИНСОН И «НОВАЯ ИСТОРИЯ» НЕСТАНДАРТНОГО АНАЛИЗА
В 1961 г. появилась статья А. Робинсона «Нестандартный анализ» в Трудах Нидерландской академии наук. В статье намечены как основные положения нестандартного анализа, так и некоторые его приложения (например, к аналитической механике). В этой статье Робинсон, в частности, писал: “Наша главная цель – показать, что эти модели дают естественный подход к старой почтенной проблеме построения исчисления, включающего бесконечно большие и бесконечно малые количества. Как хорошо известно, использование бесконечно малых, настойчиво защищаемое Лейбницем и без колебании принимаемое Эйлером, было дезавуировано с появлением методов Кошн, поставивших математический анализ на твердую основу”.
Итак, до 1961 г. понятие бесконечно малой поятоянной величины, бесконечно малого числа, интерпретировалось как в лучшем случае нестрогое, а в худшем — бессмысленное. Робинсон впервые обнаружил, что этому понятию можно придать точный математический смысл.
В течение последующих восьми лет вышли в свет три монографии, излагающие нестандартную теорию: в 1962 г.– книга У. Л. Дж. Люксембурга “Нестандартный анализ. Лекции о робинсоновой теории бесконечно малых и бесконечно больших чисел”, в 1966 г.— книга самого А. Робинсона “Нестандартный анализ”, в 1969 г. — книга М. Маховера и Дж. Хиршфелда “Лекции о нестандартном анализе”] (из 77 страниц этих “Лекций” действительной прямой отведено немногим болеее двух: «нестандартный анализ» понимается здесь в самом широком смысле).
Наибольший резонанс вызвала книга Робинсона. В девяти первых главах этой монографии содержалось как построение необходимого логико-математического аппарата, так и многочисленные приложения – к дифференциальному и интегральному исчислению, к общей топологии, к теории функций комплексного переменного, к теории групп Ли, к гидродинамике и теории упругости.
В 1966 г. появилась статья А.Р. Бернстейна и А. Робинсона, в которой впервые методами нестандартного анализа было получено решение проблемы инвариантных пространств для полиномиально компактных операторов. В очерке П.Р. Халмоша “Взгляд в гильбертово пространство” в качестве проблемы фигурирует поставленная К.Т. Смитом задача о существовании инвариантного подпространства для таких операторов Т в гильбертовом пространстве
, для которых оператор компактен. А.Р. Бернстейном и А. Робинсоном методами нестандартного анализа было доказано, что любой полиномиально компактный оператор в гильбертовом пространстве имеет нетривиальное инвариантное замкнутое подпространство.Приложения нестандартного анализа в математике охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур.
В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга.
Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”. В этой книге после изложения основных принципов нестандартного анализа рассматриваются вопросы теории возмущений.
В настоящее время нестандартный анализ завоёвывает всё большее признание. Состоялся ряд международных симпозиумов, специально посвященных нестандартному анализу и его приложениям. В течении последнего десятилетия нестандартный анализ (точнее, элементарный математический анализ, но основанный на нестандартном подходе) преподавался в ряде высших учебных заведений США.
3. БЕСКОНЕЧНО МАЛЫЕ ВЕЛИЧИНЫ
Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины (т. е. не как функции, стремящиеся к нулю, как учат современные учебники), а как величины постоянные. Такой подход хорошо согласуется как с интуицией естествоиспытателя, так и с реальной историей зарождения математического анализа. Что касается интуиции, то достаточно раскрыть любой учебник физики, чтобы натолкнуться на бесконечно малые приращения, бесконечно малые объемы и т.п. Все эти величины мыслятся, разумеется, не как переменные, а просто как очень маленькие, почти равные нулю. Было бы неправильно считать подобного рода интуицию присущей лишь авторам учебников физики. Вряд ли какой-то математик воспринимает (наглядно) элемент дуги ds иначе, чем “очень маленькую дугу”. Любой математик, составляя соответствующее дифференциальное уравнение, скажет, что за бесконечно малое время dt точка прошла бесконечно малый путь dx, а количество радиоактивного вещества изменилось на бесконечно малую величину dN.
Что же касается истории математического анализа, то в наиболее явной форме излагаемый подход проявился у одного из основоположников этой науки — Лейбница. В мае 1984 г. исполнилось 300 лет с того дня, как символы dx и dy впервые появились на страницах математических публикаций, а именно в знаменитом мемуаре Лейбница “Новый метод...”. Именно Лейбниц яснее других ощущал бесконечно малые величины постоянными (хотя и воображаемыми, идеальными) величинами особого рода, и именно Лейбниц сформулировал правила оперирования с бесконечно малыми в виде исчисления.
Какие положительные числа следует называть бесконечно малыми?
Первый ответ таков: положительное число e называется бесконечно малым, если оно меньше всех положительных чисел. Однако бесконечно малых в этом смысле положительных чисел не бывает: ведь если число меньше всех положительных чисел и само положительно, оно должно быть меньше самого себя. Попытаемся исправить положение, потребовав, чтобы e было меньше всех других
положительных чисел, но больше нуля, т. е. чтобы e было наименьшим в множестве положительных чисел. На числовой оси такое e должно изобразиться самой левой точкой множества (0, +¥). К сожалению, числа e с указанными свойствами тоже нет и не может быть: если e положительно, то число e/2 будет положительным числом, меньшим e. (Согласно обычным свойствам неравенств для всякого а > 0 выполняются неравенства 0 < а/2 < а). Так что если мы не хотим отказываться от привычных нам свойств действительных чисел (например, от возможности разделить любое число на 2 или от возможности умножить любое неравенство на положительное число), но хотим иметь бесконечно малые числа, то приведенное определение бесконечной малости не годится.