Ответ:
Задание 50
Найти производную функции
а)
Решение:
при решении будем применять правила дифференцирования частного произведения и сложной функции.
= = = =б)
+ + = + ==
+ = +в)
Решение:
г)
= = = - = - = --
= - = =Задание 73
Вычислить приближенное значение функции f (x) = ln
в точке x1 заменив приращение функции в точке х0 = 0 ее дифференциалом. Если известно a=8; b=13; c=21;x1=0.013Решение:
Если приращение аргумента ∆х = х1 – х0 достаточно мало по абсолютной величине, то приращение функции ∆f = f (x1) – f (x0) приближенно равно дифференциалу функции df. Поэтому справедлива формула
f (x0 + ∆x) ≈ f (x0) + f/ (x0) ∆x.
Для вычисления приближенного значения функции у = ln
в точке х1 = 0,013 вычислим производную этой функции в точке х0 = 0:f/ (x) =
= = = =f/ (x) = f/ (0) =
= =-1Подставив в формулу получим; f(0,013)
=-0,013Ответ: -0,013
Задание 96
Исследовать функцию
и построить ее график.Решение
1. Область определения данной функции – вся числовая ось, то есть интервал (-∞; +∞), так как выражение
f (x) =
в правой части аналитического задания функции имеет смысл при любом действительном х.
2. Как элементарная функция, данная функция является непрерывной в каждой точке своей области определения, то есть в каждой точке числовой оси.
3. Найдем все асимптоты графика данной функции.
Вертикальных асимптот график данной функции у = f (x) не имеет, поскольку последняя непрерывна на всей числовой оси формула
Для отыскания наклонной асимптоты при х→ +∞ вычислим следующие два предела k = limy/xи b = lim (y – kx)
Если оба они существуют и конечны, то прямая у = kx + bявляется наклонной асимптотой при х→+∞ графика функции у = f (x)
Прежде чем обращаться к вычислению указанных пределов, напомним тождество √х2 = |х| (1), из которого следует, что при x > 0 √х2 = х ,
а при х < 0 √х2 = -х или х = -√х2 (2)
Приступая к вычислению первого предела, разделим числитель и знаменатель дроби на х2, затем воспользуемся равенством (1) и основными свойствами предела:
k=
= = = = = = =0Для вычисления второго предела разделим числитель и знаменатель дроби на х и, действуя далее аналогично тому, как и при вычислении первого предела, получим:
b =
(y – kx)= y = = = = = =3Следовательно, прямая у = 3 является наклонной асимптотой графика данной функции при х→+∞ (поскольку угловой коэффициент k этой прямой равен нулю, то такую наклонную асимптоту называют также горизонтальной при х→+∞.
Для отыскания наклонной асимптоты при х→ -∞ вычислим пределы k1 = limy/xи b1 = lim (y – kx)
Если оба они существуют и конечны, то прямая y = k1x + b1 является наклонной асимптотой при х→-∞