Смекни!
smekni.com

Объем фигур вращения правильных многогранников (стр. 3 из 3)


Ответ:

Задача 3.2.

Вычислить объем тела, полученного вращением октаэдра относительно оси, проходящей через середины его противоположных ребер, если ребро октаэдра равно а.


Решение:

Тело, полученное при данном типе вращения, состоит из двух равных цилиндров и двух гиперболоидов вращения с общим основанием.

Следовательно,

Для нахождения радиусов и высот элементов, из которых состоит тело вращения, воспользуемся теоремой о линиях пересечения цилиндрической и гиперболической поверхностей вращения.

(половина ребра октаэдра)

RН равен половине главной диагонали октаэдра, следовательно,

.

RСР находим как медиану треугольника А3ОN (см. рисунок).

1). ∆ОМА3:

.

, следовательно,
.

Пусть ML = x, тогда

.

С другой стороны

Откуда

.

Следовательно,

,

тогда

.

2). ∆NOA3:

.

Пусть

, тогда по теореме косинусов:

, откуда

,

тогда из ∆А3OK находим


3).

.

;

Объем гиперболоида найдем по формуле Симпсона:

Окончательно получаем:

Ответ:

Задача 3.3.

Вычислить объем тела, полученного вращением октаэдра относительно оси, проходящей через центры его противоположных граней, если ребро октаэдра равно а.

Решение:


В данном случае прямые (образующие поверхности) скрещиваются с осью вращения, значит, в результате вращения получается гиперболическая поверхность.

По формуле Симпсона

RВ = RН = R – радиус окружности, описанной около равностороннего треугольника со стороной а (грани октаэдра). Следовательно,

.

Так как перпендикулярным сечением денного тела вращения является окружность, описанная около правильного шестиугольника со стороной

(как средняя линия грани октаэдра), то

.

Н находим из прямоугольного треугольника по теореме Пифагора:

Окончательно получаем:

Ответ:


Заключение

Геометрия развивает воображение, говорит о формах окружающего нас мира и помогает познать их красоту. Величайшие художники не могли творить без геометрии.

Удачное, красивое, неожиданное решение геометрических задач всегда приносит радость.

Геометрия представляет большой исторический интерес, имеет серьезное практическое применение и обладает внутренней красотой.

Моя работа способствовала развитию пространственного «видения». В процессе проделывания мной той или иной работы, я все больше убеждалась, что самостоятельное изготовление и изучение наглядных пособий в процессе теоретических знаний и навыков, закрепляет и формулирует новые понятия.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика, наслаждающегося видением многообразия фигур, получающихся при вращении правильных многогранников. Пчелы строили шестиугольные соты задолго до появления человека, а в истории цивилизации создание многогранных тел (подобных пирамидам) наряду с другими видами пластических искусств уходит в глубь веков. Пять правильных тел изучали Теэтет, Платон, Евклид, Гипсикл, Папп.

В процессе работы были получены следующие результаты:

При вращении тетраэдра относительно оси, проходящей через его ребро, получается тело вращения, объем которого равен

При вращении тетраэдра относительно оси, проходящей через центр грани и противоположную вершину (т.е. через высоту тетраэдра), получается тело вращения, объем которого равен

При вращении тетраэдра относительно оси, проходящей через среднюю линию грани тетраэдра, получается тело вращения, объем которого равен

При вращении куба относительно оси, проходящей через противоположные вершины, получается тело вращения, объем которого равен

При вращении куба относительно оси, проходящей через середины его противоположных ребер, получается тело вращения, объем которого равен

При вращении куба относительно оси, проходящей через центры его противоположных граней, получается тело вращения, объем которого равен

При вращении октаэдра относительно оси, проходящей через противоположные вершины, получается тело вращения, объем которого равен

При вращении октаэдра относительно оси, проходящей через середины его противоположных ребер, получается тело вращения, объем которого равен

Кроме того, данные, полученные в этой работе, позволяют продолжить ее в двух направлениях. Во-первых, полученные результаты позволяют вычислить площади поверхности каждого из тел вращения, рассмотренных в работе. Во-вторых, для вычисления тех же объемов и площадей поверхности тел вращения можно использовать интегральное исчисление.


Список литературы

1. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия для 9 – 10 классов. Учебное пособие для школ и классов с углубленным изучением математики. - М., 1994.

2. Бренстед А. Введение в теорию выпуклых многогранников. – М., 1988.

3. Веннинджер М. Модели многогранников. – М., 1974.

4. Каченовский М.И. Математический практикум по моделированию. – М., 1959.

5. Люстерник Л.А. Выпуклые фигуры и многогранники. – М., 1956.

6. Пидоу Д. Геометрия и искусство. – М., 1979.

7. Смирнова И.М. Многогранники. Факультативный курс: методические разработки. – М., 1988.

8. Шклярский Д.О., Ченцов Н.Н., Яглом И.М. Избранные задачи и теоремы элементарной математики. Геометрия (Стереометрия). – М., 1954.

9. Шубников А.В., Копцик В.А. Симметрия в науке и искусстве. – М., 1972.

10. Савин А. П., Станцо В.В., Котова А.Ю. Я познаю мир, Детская энциклопедия МАСТ,1999.