Многочлены Чебышева первого рода
или, что почти эквивалентно,
Несколько первых многочленов Чебышева первого рода
Многочлены Чебышева обладают следующими свойствами:
Ортогональность по отношению к соответствующим скалярному произведению (с весом
Среди всех многочленов, значения которых на отрезке [ − 1,1] не превосходят по модулю 1, многочлен Чебышева имеет: наибольший старший коэффициент наибольшее значение в любой точке за пределами [ − 1,1] если
Нули полиномов Чебышева являются оптимальными узлами в различных интерполяционных схемах. Например, в методе дискретных особенностей, который часто используется при исследовании интегральных уравнений в электродинамике и аэродинамике.
3.
4. Преобразование Лапласа
Преобразование Лапласа — интегральное преобразование, связывающее функцию
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.
Интеграл Лапласа имеет вид:
где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(p) комплексного переменного p=s+it. Многие интегралы вида (5) были рассмотрены П. Лапласом.
В узком смысле под преобразованием Лапласа подразумевают одностороннее преобразование Лапласа
называемое так в отличие от двустороннего преобразования Лапласа
Преобразование Лапласа – частный вид интегральных преобразований;. преобразования вида (6) или (7) тесно связаны с Фурье преобразованием. Двустороннее преобразование Лапласа (7) можно рассматривать как преобразование Фурье функции
Подынтегральная комплексная локально суммируемая функция f(t) называется функцией-оригиналом, или просто оригиналом; в приложениях часто удобно трактовать переменное t как время. Функция F(p)=L[f], (р) называется также преобразованием Лапласа оригинала f(t) или изображением по Лапласу. Интеграл (6) понимается, вообще говоря, как условно сходящийся на бесконечности.
Априори возможны три случая:
1) существует действительное число
2) интеграл (6) сходится при всех р, в этом случае полагают
3) интеграл (6) расходится при всех р, в этом случае полагают
Если
Если а – есть нижняя грань тех s, для которых
При некоторых дополнительных условиях оригинал f(t) однозначно восстанавливается по своему F(p). Например, если f(t) имеет ограниченную вариацию в окрестности точки t0 или если f(t) кусочногладкая, то имеет место формула обращения преобразования Лапласа:
Формулы (6) и (8) позволяют получить ряд соотношений между операциями, производимыми над оригиналами и изображениями, а также таблицу изображений для часто встречающихся оригиналов. Все это составляет элементарную часть операционного исчисления.
В математической физике важные применения находит многомерное преобразование Лапласа:
где t = (t1, ……, tn)
-точка re-мерного евклидова пространства
Rn, p = (p1, ……, pn) = σ + iτ = (σ1, ……, σn) + (τ1, ……, τn)
-точка комплексного пространства
Cn, n≥1, (p,t) = (σ,t)+i(τ,t) = p1t1 + … +pntn
-скалярное произведение, dt = dt1…dtn - элемент объема в Rn. Комплексная функция f(t) в (9) определена и локально суммируема в области интегрирования
-положительном координатном угле пространства Rn. Если функция f(t) ограничена в C*, то интеграл (9) существует во всех точках
Интеграл (9) определяет голоморфную функцию комплексных переменных p = (p1 ,- pn) в трубчатой области