Смекни!
smekni.com

Евклідова і неевклідова геометрії (стр. 12 из 14)

Ці міркування дозволяють прийняти наступне загальне визначення n-мірних неевклідових геометрій.

Неевклідовими геометріями n-вимірів називаються геометрії, які породжуються на n-мірних сферах, Sn речовинного або чисто мнимого радіуса в (n+1)-мірному евклідовому відповідно псевдоевклідовом просторі. Передбачається також» що діаметрально протилежні крапки цих сфер ототожнені, тобто такі пари крапок уважаються за одну крапку.

Із цього визначення треба, що при зростанні n число типів неевклідових просторів також росте. Неевклідові геометрії є геометриями найпростіших римановых просторів певної й невизначеної метрики, що становлять так званий клас просторів постійної ненульової кривизни. Кожне з таких n-мірних просторів допускає сукупність рухів, що залежить від n(n+1)/2 параметрів.

Очевидно, при n=2 одержимо еліптичну площину й площину Лобачевского. Геометрія, цих площин буде відповідно геометрією сфери Евклідова простору й геометрією сфери чисто мнимого радіуса в псевдоевклідовом просторі.

Наше найближче завдання — вивести основні формули сферичного трикутника (так називаються трикутник на сфері, утворений трьома дугами більших окружностей). Ці формули виражають основні математичні співвідношень у трикутниках геометрії Лобачевского.

а) СНачало доведемо так звану теорему косинусів. Припустимо, що нам даний сферичний трикутник з вершинами А(

), В (
), З (
)
, кутами A, В, С и протилежними сторонами відповідно а, b, с.

Очевидно, ці сторони пов'язані з радіус-векторами вершин сферичного трикутника наступними рівностями

(3.21)

Припустимо далі, що дотична площина до сфери в крапці З перетинає радіуси ОА й ОВ у крапках

і
. Ці числові множники
,
радіусів векторів крапок A1 і B1 визначаються зовсім просто, якщо врахувати ортогональність векторів
,
і
,
Дійсно,

.

Звідси на підставі (3.21) треба, що


. (3.22)

Повторюючи наведені міркування для іншої пари

й
ортогональних векторів, одержимо

. (3.23)

Знайдемо тепер скалярний добуток векторів

і
. З одного боку, маємо

,

Де

Отже, на підставі (3.22, 3.23) маємо

Тому

.

З іншого боку,

.

Застосовуючи потім (3.21), (3.22), (3.23), одержимо

(3.25)

Порівнюючи (3.24) і (3.25), містимо

Або

. (3.26)

Формула (3.26) не залежить від нашого припущення про крапки перетинання А1і В1. Ця формула виражає теорему косинусів сферичного трикутника сфери чисто мнимого радіуса: косинус гіперболічної сторони сферичного трикутника дорівнює добутку косинусів гіперболічних двох інших сторін без добутку синусів гіперболічних цих же сторін на косинус кута між ними.

б) Переходимо тепер до висновку теореми синусів. Обчислимо для цього квадрат відносини

. На підставі (3.26), маємо

. (*)

Бачимо, що чисельник правої частини є симетричним вираженням щодо змінних а, b, с. Неважко переконатися, що такою ж симетричністю щодо цих змінних володіє й знаменник. Справді

(3.27)

Таким чином, квадрат шуканого відношення симетричний щодо сторін а, b, с. Це означає, що заміняючи позначення сторін а, b, з і кутів А, В, С у круговому порядку в (*) одержимо відносини

,
, рівні
. Витягаючи із цих відносин квадратних корінь, одержимо формули

, (3.28)

теорему, що виражає, синусів сферичного трикутника в геометрії сфери чисто мнимого радіуса: синуси гіперболічних сторін сферичного трикутника ставляться як синуси протилежних кутів.


в) Помітимо, що формули (3.26) і (3.28) геометрії сфери чисто мнимого радіуса r = ki у псевдоевклідовому просторі можна одержати з відповідних формул сферичного трикутника в евклідовому просторі, заміняючи

на
,
на
,
на
.

Застосовуючи це правило, одержимо другу теорему косинусів для сферичного трикутника у випадку сфери мнимого радіуса:

(3.29)

Інакше, косинус кута сферичного трикутника дорівнює добутку синусів двох інших кутів на косинус гіперболічної сторони між цими кутами без добутку косинусів двох інших кутів.

Звідси треба, що якщо кути одного сферичного трикутника дорівнюють відповідним кутам іншого сферичного трикутника, те такі трикутники рівні.

Формули прямокутного трикутника

Припустимо, кут Із трикутника AВС є прямим. Застосовуючи теорему косинусів (3.26), одержимо

. (3.30)

Ця рівність виражає теорему Піфагора в геометрії Лобачевского: косинус гіперболічної гіпотенузи прямокутного трикутника рівняється добутку косинусів гіперболічних катетів. Застосовуючи формулу (3.28) будемо мати:


, (3.31)

. (3.32)

Отримані формули можна виписати за мнемонічним правилом, аналогічному правилу Непера в сферичній геометрії.

У цих формулах зв'язуються п'ять елементів прямокутного трикутника, які можна розглядати в циклічному порядку

. Для кожного елемента попередній і наступний елементи називаються прилеглими, а інші два елементи - протилежними елементами. Мнемонічне правило формулюється в такий спосіб.

Косинус елемента прямокутного трикутника в геометрії Лобачевского рівняється добутку синусів протилежних елементів або добутку котангенсів прилеглих елементів.

Якщо під знаком функції входить кут, то функція розуміється в тригонометричному змісті. Якщо ж входить довжина, то вона ділиться на радіус кривизни і їхня функція розуміється в гіперболічному змісті. Нарешті, у випадку, коли під знаком функції коштує катет, функція міняється на суміжну: синус - на косинус, тангенс - на котангенс і навпаки.

Користуючись наведеним правилом, одержимо для кожного елемента відповідні вираження через прилеглі й протилежні елементи прямокутного трикутника:


(3.33)

Основна формула Лобачевского

Нехай дана на площині Лобачевского пряма a і крапка A, не інцідентна їй. Опустимо із крапки А перпендикуляр АВ на пряму а (мал. 19). Проведемо також через крапку А пряму АТ, паралельну прямій а в якому-небудь напрямку. Кут

, як указували вище, називається кутом паралельності, а відрізку АВ. Для одержання основний формул Лобачевского, що зв'язує кут паралельності ВАО = П(p) з відрізком p=АВ, візьмемо на промені В яку-небудь крапку С. Для прямокутного трикутника AВС, маємо