Смекни!
smekni.com

Алгебраические кривые и диофантовы уравнения (стр. 3 из 3)

Пока неясно, существуют ли эллиптические кривые сколь угодно большого ранга (что считается весьма вероятным). Известно, однако, что ранг оценивается через коэффициенты уравнения (12) (точнее, через число различных простых сомножителей отдельных коэффициентов [18]). Поэтому неудивительно, что в построенных примерах кривых высокого ранга уравнения имеют большие коэффициенты. Согласно одной из упомянутых выше гипотез, ранг эллиптической кривой E равен кратности нуля так называемого L-ряда LE (z) кривой E в точке z = 1 (Бёрч и Суиннертон-Дайер [3]).

Рассмотрим, наконец, группу кручения TE . Она состоит из рациональных точек P конечного порядка (т.е. из тех, для которых n-кратная композиция P*P*...*P равна O при некотором n), называемых (рациональными) точками кручения. Прежде всего на основании самого вида кривой можно заключить, что справедлива следующая общая структурная теорема: группа TE либо сама циклична, либо есть произведение группы Z2 порядка 2 на циклическую группу. Это можно обосновать следующим образом. Кривая E (пополненная) состоит из одной или двух замкнутых линий (см. рис.8), а потому топологически выглядит как одна или две окружности. При этом часть E0, содержащая (несобственную) точку O, образует подгруппу. Можно доказать, что любая конечная подгруппа в E0 циклическая (это делается точно так же, как для группы вращений окружности). Следовательно, если группа кручения TE целиком лежит в E0, то TE – циклическая группа. В противном случае TE есть произведение Z2 на группу T0E точек кручения из E0.

О группе кручения кое-что было известно уже довольно давно. Так, Т. Нагелль ([10], 1935 г.) и, позднее, Л. Лутц ([7], 1937 г.) получили следующий интересный результат, дающий одновременно метод для явного определения точек кручения конкретных кривых:

Если Р – (рациональная) точка кручения эллиптической кривой Е, заданной уравнением

y2 = x3 + ax2 + bx + cто её координаты xP и уP являются целыми числами, причём уP равно или 0, или какому-нибудь делителю дискриминанта D кривой Е.

(Дискриминантом кривой называется определённый многочлен от коэффициентов уравнения; в данном случае дискриминант равен

D = 4a3c – a2b2 – 18abc + 4b3 + 27c2;

условие D ¹ 0 является необходимым и достаточным условием регулярности кривой E.) Например, для кривой

E: y2 = x3 – 14x2 + 87x

группа кручения TE есть циклическая группа порядка 8, порождённая точкой P = (3,12). Другим примером служит кривая

E: y2 = x3 – 43x2 + 166

с циклической группой кручения порядка 7, порождённой точкой P = (3,8). Весьма занимательно и совсем несложно самостоятельно придумать и исследовать другие примеры.

Уже давно существовало предположение, подтверждавшееся всё новыми численными примерами, что порядок группы кручения ограничен. К 1960 г. было известно, что он не может принимать некоторых значений, например кратных 11, 14, 15, ... (см. [4]).

В 1976 г. Б. Мазур существенно продвинулся вперёд, доказав, что порядок всякой рациональной точки кручения равен 12 или не превосходит 10 (это уже в 1974 г. предполагал Э. Огг [12]). Тем самым была полностью выяснена структура группы TE.

Имеется 15 возможностей: либо TE – циклическая группа, порядок которой равен 12 или не превосходит 10, либо она есть произведение группы Z2 на циклическую группу порядка 2, 4, 6 или 8.

Выдающимся результатом Б. Мазура была завершена одна из глав теории эллиптических кривых, причём весьма неожиданно даже для некоторых специалистов, считавших, что над этой проблемой придётся работать ещё долгое время. Можно смело утверждать, что этот результат принадлежит к числу интереснейших математических результатов последних лет. Разумеется, в рамках настоящей лекции невозможно указать даже хотя бы идею метода доказательства Мазура. Да это и не входит в мою задачу.

Я хотел только попытаться пройти вместе с вами небольшую часть пути развития одной математической проблемы – от Пифагора через Диофанта и гипотезу Ферма к рациональным точкам эллиптических кривых – и показать, как в ходе исследования проблему видоизменяли, обобщали и снова конкретизировали, частично решали и возводили на её основе новые теории. Пусть нематематики простят мне, что время от времени я вынужден был обращаться к математическим понятиям и формулам.

Примечания

1.

Формально-математически это означает отсутствие особенностей у соответствующей комплексной проективной кривой, представляющей собой тем самым поверхность Римана рода g > 1. назад к тексту

2.

Случаи, когда квадрика вырождается в точку (как это будет, например, для кривой, задаваемой уравнением x² + y² = 0), не принимаются во внимание. назад к тексту

3.

Происхождение этого названия имеет долгую историю. Уже в XVII в. при вычислении длин дуг эллипсов и других кривых математики столкнулись с интегралами вида

g
ò

dxÖf (x)

0

где f (x) – многочлен степени не выше 4. Исследование этих эллиптических интегралов начал Эйлер. Абель и независимо от него Якоби рассмотрели обратные функции для этих интегралов. Следуя Якоби, их стали называть эллиптическими функциями. Выяснилось, что это двоякопериодические мероморфные функции, удовлетворяющие дифференциальному уравнению вида

X ´ ² – f (X) = 0.

Исходя из этого уравнения, можно показать, что эллиптические функции – это в точности функции, мероморфные на эллиптических кривых (понимаемых как компактные римановы поверхности). назад к тексту

4.

Видоизменив метод Грюнвальда и Циммерта, К.Наката нашёл недавно пример кривой ранга ³9 (К.Nakata, Manuscripta Math. 29 (1979)). назад к тексту

Литература

(Превосходные библиографии имеются в [4] и [17]. По проблеме Ферма полезно сравнить [5] и [15].)

Список литературы

И.Г.Башмакова, Диофант и диофантовы уравнения. – М: Наука, 1972. назад к тексту

K.L.Biernatzki, Die Arithmetik der Chinesen, J. reine angew. Math. 52 (1856). назад к тексту

В.J.Birch, H.P.F.Swinnerton-Dyer, Notes on elliрtic curves. II, J. reine angew. Math. 218 (1965). назад к тексту

W.S.Cassels, Diophantine equations with special reference to elliptic, J. London Math. Soc. 41 (1966). назад к тексту

H.M.Edwards, Fermat's Last Theorem, Springer Graduate Texts in Mathematics, vol.50, Springer-Verlag, New York – Heidelberg – Berlin, 1977. [Имеется перевод: Г.Эдвардс. Последняя теорема Ферма. Генетическое введение в алгебраическую теорию чисел. – М.: Мир, 1980.] назад к тексту

F.J.Grunewald, R.Zimmert, Über einige rationale elliptische Kurven mit freiem Rang ³8, J. reine angew. Math. 296 (1977). назад к тексту

E.Lutz, Sur l'equation y² = x³ – Ax – B dans les corps p-adiques, J. Math. 177 (1937). назад к тексту

B.Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977). назад к тексту

L.I.Mordell, On the rational solutions of the indeterminant equations of the third and fourth degrees, Proc. Cambridge Phil Soc. 21 (1922). назад к тексту

T.Nagell, Solution de quelques problèmes dans la théorie arithmétique des cubiques planes du premier genre, Vid. Akad. Skrifter Oslo 1 (1935), No. 1. назад к тексту

A.Neron, Problèmes arithmétiques et géométriques rattachés à la notion de rang d'une courbe algébriques dans un corps, Bull. Soc. Math. France 80 (1952). назад к тексту

A.P.Ogg, Diophantine equations and modular forms, Bull. Amer. Math. Soc. 81 (1975). назад к тексту

D.E.Penney, C.Pomerance, Three elliptic curves with rank at least seven, Math. Comp. 29 (1975). назад к тексту

H.Poincaré, Sur les propriétés arithmétiques des courbes algébriques, J. de Math. Pures et Appl., ser. 5, 7 (1901). назад к тексту

P.Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag, New York – Heidelberg – Berlin, 1979. назад к тексту

C.L.Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1 (1929). назад к тексту

J.T.Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974). назад к тексту

J.T.Tate, Rational Points on Elliptic Curves, Philips Lectures, Haverford College, 1961. назад к тексту

R.Wachendorf, Über den Rang der elliptischen Kurve y² = x³ – p²x, Diplomarbeit, Bonn, 1974. назад к тексту

A.Wiman, Über rationale Punkte auf Kurven dritter Ordnung vom Geschlecht Eins, Acta Math. 80 (1948). назад к тексту

Сведения по истории математики наряду с [1], [4], [5], [15], [17] можно найти в работах:

M.Cantor, Vorlesungen über Geschichte der Mathematik, 4 Bände, Leipzig, 1900–1908.

L.E.Dickson, History of the theory of numbers, Carnegie Institution, Washington, 1919, 1920, 1923.

D.I.Struik, Abriss der Geschichte der Mathematik, Vieweg, Braunschweig, 1976. [Имеется перевод: Д.Я.Стройк. Краткий очерк истории математики. – М., Наука, 1978.]

B.L.van der Waerden, Die Pythagoreer, Artemis Verlag, 1979. [См. также: Б.Л.ван дер Варден. Пробуждающаяся наука. – М.: Физматгиз, 1959. – Перев.]

Encyclopedic Dictionary of Mathematics, ed. by Math. Soc. Japan, MIT Press, Cambridge Mass. and London.