Смекни!
smekni.com

Дослідження нестандартних методів рішення рівнянь і нерівностей. (стр. 2 из 6)

Академік Петербурзької академії наук Леонард Ейлер (1707 -1783) вніс істотний вклад у питання теорії комплексних чисел. Після його робіт комплексні числа одержали остаточне визнання як предмет і засіб вивчення. Сама назва «комплексне число» було запропоновано в 1831 р. німецьким математиком Карлом Фрідріхом Гауссом (1777 - 1855).

У цей час комплексні числа широко вживаються в багатьох питаннях фізики й техніки.

Вище мова йшла про алгебраїчні рівняння, тобто рівняннях f(x) = O, де f(x) - багаточлен відносно х.

Крім алгебраїчних рівнянь, є ще й трансцендентні рівняння: показові, логарифмічні, тригонометричні й ін. Рішення трансцендентних рівнянь, а також нерівностей істотно опирається на властивості функцій, які вивчаються в математику відносно недавно.

Особливе місце серед алгебраїчних рівнянь займають так звані диофантові рівняння, тобто рівняння, у яких невідомих більше однієї.

Найбільш відомими з них є лінійні дофантові рівняння. Приклади задач, що приводять до лінійних дофантових рівнянь, знаходимо в збірнику задач ченця Алькуїна, запрошеного в 795 р. Карлом Великим викладати в першу з відомих шкіл у м. Аахен. От ця задача:

«100 шеффелей (грошових одиниць) розділили між чоловіками, жінками й дітьми (число персон 100) і дали при цьому чоловікам по 3 шеффеля, жінкам по 2 і дітям по

шеффеля. Скільки було чоловіків, жінок і дітей?»

Позначивши кількість чоловіків за х, кількість жінок за у, ми прийдемо до рівняння

Зх + 2y+

( х-y)= 100

Загального рішення лінійних дофантових рівнянь у ті часи ще не знали й задовольнялися лише декількома рішеннями, що задовольняють умові задачі. У самого Алькуина було наведено лише одне рішення цієї задачі: чоловіків, жінок і дітей було 11, 15 і 74, а задача має 784 рішення в натуральних числах.

Задачі, що приводять до лінійних дофантових рівнянням, були в Леонардо Пизанського (Фибоначчи) (1180 - 1240), в «Арифметиці» Л. Ф. Магницького.

Відоме рівняння Піфагора (VI в. до н.е.) х2 + в2= z2 вирішують у натуральних числах. Його рішеннями служать трійки чисел (х; в; z):

x = (m2-n2)l, y = 2mnl, z = (m2 + n2)l,

де т, п, l - будь-які натуральні числа (т> п). Ці формули допомагають знаходити прямокутні трикутники, довжини сторін яких є натуральними числами.

В 1630 р. французький математик Пьер Ферма (1601 — 1665) сформулював гіпотезу, що називають великою (або великий) теоремою Ферма: «Рівняння хп + уп = zn для натурального п ≥ 3 не має рішень у натуральних числах». Ферма не довів свою теорему в загальному випадку, але відома його запис на полях «Арифметики» Диофанта: «...неможливо куб записати у вигляді суми двох кубів, або парний ступінь у вигляді суми таких же ступенів, або взагалі будь-яке число, що є ступенем більшої, ніж друга, не можна записати у вигляді суми двох таких же ступенів. У мене є воістину дивний доказ цього твердження, але поля ці занадто вузькі, щоб його вмістити». Пізніше в паперах Ферма було знайдене доказ його теореми для п= 4. З тих пор більше 300 років математики намагалися довести велику теорему Ферма. В 1770 р. Л.Ейлер довів теорему Ферма для п = 3, в 1825 р. Адриен Лежандр (1752 1833) і Петер Дирихле (1805 - 1859) - для п = 5. Доказ великої теореми Ферма в загальному випадку не вдавався довгі роки. І тільки в 1995 р. Ендрю Вайлс довів цю теорему.


2. РІШЕННЯ ЗАДАЧ ІЗ ВИКОРИСТАННЯМ ВЛАСТИВОСТЕЙ ФУНКЦІЇ

Не всяке рівняння f(x) = g(x) або нерівність у результаті перетворень або за допомогою вдалої заміни змінної може бути зведене до рівняння або нерівності того або іншого стандартного виду, для якого існує певний алгоритм рішення. У таких випадках іноді виявляється корисним використовувати деякі властивості функцій, такі як монотонність, періодичність, обмеженість, парність і ін.

2.1 Використання монотонності функції

Функція f (x) називається зростаючої на проміжку D, якщо для будь-яких чисел x1 і x2 із проміжку D таких, що x1 < x2, виконується нерівність f (x1) < f (x2).

Функція f (x) називається убутної на проміжку D, якщо для будь-яких чисел x1 і x2 із проміжку D таких, що x1 < x2, виконується нерівність f (x1) > f (x2).

На показаному на малюнку 1 графіку

Малюнок 1

Функція y = f (x),

, зростає на кожному із проміжків [a; x1) і (x2; b] і убуває на проміжку (x1; x2). Зверніть увагу, що функція зростає на кожному із проміжків [a; x1) і (x2; b], але не на об'єднанні проміжків

Якщо функція зростає або убуває на деякому проміжку, то вона називається монотонної на цьому проміжку.

Помітимо, що якщо f – монотонна функція на проміжку D (f (x)), те рівняння f (x) = const не може мати більше одного кореня на цьому проміжку.

Дійсно, якщо x1 < x2 – корінь цього рівняння на проміжку D (f(x)), те f (x1) = f (x2) = 0, що суперечить умові монотонності.

Перелічимо властивості монотонних функцій (передбачається, що всі функції визначені на деякому проміжку D).

Сума декількох зростаючих функцій є зростаючою функцією.

Добуток ненегативних зростаючих функцій є зростаюча функція.

Якщо функція f зростає, то функції cf (c > 0) і f + c також зростають, а функція cf (c < 0) убуває. Тут c - деяка константа.

Якщо функція f зростає й зберігає знак, то функція

убуває.

Якщо функція f зростає й ненегативна, то fn де n

N, також зростає.

Якщо функція f зростає й n – непарне число, то fn також зростає.

Композиція g (f (x)) зростаючих функцій f і g також зростає.

Аналогічні твердження можна сформулювати й для убутної функції.

Крапка a називається крапкою максимуму функції f, якщо існує така ε-околиця крапки a, що для будь-якого x із цієї околиці виконується нерівність f (a) ≥ f (x).

Крапка a називається крапкою мінімуму функції f, якщо існує така ε-околиця крапки a, що для будь-якого x із цієї околиці виконується нерівність f (a) ≤ f (x).

Крапки, у яких досягається максимум або мінімум функції, називаються крапками екстремуму.

У крапці екстремуму відбувається зміна характеру монотонності функції. Так, ліворуч від крапки екстремуму функція може зростати, а праворуч - убувати. Відповідно до визначення, крапка екстремуму повинна бути внутрішньою крапкою області визначення.

Якщо для кожного

(x ≠ a) виконується нерівність f (x) ≤ f (a)
, те крапка a називається крапкою найбільшого значення функції на множині D:

Якщо для кожного

(x ≠ b) виконується нерівність f (x) > f (b)
, те крапка b називається крапкою найменшого значення функції на множині D.

Крапка найбільшого або найменшого значення функції на множині D може бути екстремумом функції, але не обов'язково їм є.

Крапку найбільшого (найменшого) значення безперервної на відрізку функції варто шукати серед екстремумів цієї функції і її значень на кінцях відрізка.

Рішення рівнянь і нерівностей з використанням властивості монотонності ґрунтується на наступних твердженнях.

1. Нехай f(х) - безперервна й строго монотонна функція на проміжку Т , тоді рівняння f(x) = З, де З - дана константа, може мати не більше одного рішення на проміжку Т.

2. Нехай f(x) і g(х) - безперервні на проміжку T функції, f(x) строго зростає, а g(х) строго убуває на цьому проміжку, тоді рівняння f(х) = =g(х) може мати не більше одного рішення на проміжку Т. Відзначимо, що як проміжок T можуть бути нескінченний проміжок (-?;+?) , проміжки (а;+?), (-?; а), [а;+?), (-?; b], відрізки, інтервали й напівінтервали.

Приклад 2.1.1 Вирішите рівняння

. [28] (1)

Рішення. Очевидно, що х ≤ 0 не може бути рішенням даного рівняння, тому що тоді

. Для х > 0 функція
безперервна й строго зростає, як добуток двох безперервних позитивних строго зростаючих для цих х функцій f(x) = х і
. Виходить, в області х > 0 функція
приймає кожне своє значення рівно в одній крапці. Легко бачити, що х = 1 є рішенням даного рівняння, отже, це його єдине рішення.

Відповідь: {1}.

Приклад 2.1.2 Вирішите нерівність

. (2)

Рішення. Кожна з функцій в = 2x, в = 3x, в = 4х безперервна й строго зростаюча на всій осі. Виходить, такий же є й вихідна функція

. Легко бачити, що при х = 0 функція
приймає значення 3. У силу безперервності й строгої монотонності цієї функції при х > 0 маємо
, при х < 0 маємо
. Отже, рішеннями даної нерівності є всі х < 0.