те для будь-якого х із проміжку
цей багаточлен позитивний. Це означає, що на проміжку рівняння (17) також не має рішень.Оскільки
,те для будь-якого x із проміжку
цей багаточлен позитивний. Отже, і на проміжку рівняння (17) не має рішень.Отже, дане рівняння (17) має єдине рішення
.Відповідь: {1}.
ВИСНОВОК
У процесі дослідження ціль дипломної роботи досягнута, повністю вирішені поставлені задачі й отримані наступні результати й висновки:
Наведено відомості про давнину постановки перед людиною задачі рішення рівнянь і нерівностей.
Наведено й розглянуті на прикладі методи рішення рівнянь і нерівностей, засновані на використанні властивостей функції.
Розглянуто й випробувані додаткові нестандартні методи рішення рівнянь і нерівностей.
Продовження дослідження може полягати у вивченні застосування властивостей синуса й косинуса, застосуванні похідній, використанні числових нерівностей, використанні графіків і інших нестандартних способів рішення рівнянь і нерівностей.
ДОДАТОК
Задачі для самостійного рішення:
Доведіть, що наступне рівняння не має рішень:
. . . .Вирішите рівняння:
Відповідь: {0}.
.Відповідь: {2}.
.Відповідь: {-1}.
.Відповідь: {2}.
.Відповідь: {1}.
.Відповідь: {1; -2}.
Відповідь:
. .Відповідь:
Вирішите нерівність:
.Відповідь:
. .Відповідь:
. .Відповідь:
. .Відповідь:
. .Відповідь:
СПИСОК ДЖЕРЕЛ
1. Абилкасимова А. Є. Алгебра 10 клас. – К., 2003
2. Алилов М. А., Колягин Ю. М. і ін. Алгебра й начало аналізу. – К., 2004
3. Болтянський В. Г., Сидоров Ю. В., Шабунин М. І. Лекції й задачі по елементарній математиці. – К., 2006
4. Газета «Математика» №20, 2008 р.
5. Голубєв В. і. Рішення складних і нестандартних задач по математиці. – К., 1995
6. Горштейн П. І. Задачі з параметрами., - К., 1999.
7. Гусєв В. А., Мордович О. Г. Математика. Довідкові матеріали. – К., 2001
8. Далингер В. А. Нестандартні рівняння й методи їхнього рішення. –К., 2005
9. Жафяров А. Ж. Профільне навчання старшокласників. К., 2001
10. Журнал «Математика в школі», 1999-2007 р.
11. Івлєв Б. М., Абрамов А. М., Дудницин Ю. П., Швардцбурд С. І. Задачі підвищених труднощів по алгебрі й початкам аналізу. – К., 2005.
12. Ковальова Г. И., Конкина Е. В. Функціональний метод рішення рівнянь і нерівностей. – К., 2006
13. Кравцов С. В. Методи рішення задач по алгебрі. – К., 2001
14. Кулагін Є. Д. 300 конкурсних задач по математиці. - К., 2003
15. Кушнір А. І. Математична енциклопедія. - К.,1995 р.
16. Литвиненко В. Н., Мордкович А. Г. Практикум по елементарній математиці. Алгебра. Тригонометрія. – К., 1991 р.