Міністерство освіти і науки України
Черкаський національний університет
імені Б. Хмельницького
Кафедра геометрії та методики навчання математики
Курсова робота
Методи розв’язування раціональних нерівностей вищих степенів
ІV курс, денна форма навчання, математичний факультет
Глушко Юлія Сергіївна
Науковий керівник:
викладач кафедри геометрії та
методики навчання математики
Воловик Оксана Петрівна
Черкаси 2010
Зміст
Вступ
§ 1. Теоретичні основи дослідження
1.1 Загальні відомості про раціональні нерівності
1.2 Теореми про рівносильність нерівностей
§ 2. Раціональні нерівності вищих степенів та методи їх розв’язування
2.1 Розв’язування раціональних нерівностей вищих степенів методом інтервалів
2.2 Розв’язування раціональних нерівностей узагальненим методом інтервалів
2.3 Розв’язування дробово-раціональних нерівностей
2.4 Розв’язування раціональних нерівностей методом заміни змінної
Висновки
Список використаних джерел
Вступ
Актуальність теми зумовлена тим, що розв’язування раціональних нерівностей вищих степенів викликає у багатьох учнів певні труднощі. Розв’язування більшості нерівностей вищих степенів вимагає знання різноманітних теоретичних відомостей, застосування різних теорем та формул. Отримати навички розв’язування раціональних нерівностей вищих степенів можна лише тоді, коли розв’язати їх достатньо велику кількість, ознайомившись з різними методами та прийомами їх розв’язання.
Все це обумовило обрання теми: «Методи розв’язування раціональних нерівностей вищих степенів»
Мета роботи полягає в тому, щоб розглянути різні методи раціональних нерівностей вищих степенів
Однією з основних функцій розв’язування раціональних нерівностей вищих степенів є формування уявлень про ідею і використання раціональних методів і прийомів.
Майстерність розв’язувати раціональних нерівностей вищих степенів ґрунтується на володінні високим рівнем знань теоретичної частини курсу та певним арсеналом методів і прийомів розв’язування раціональних нерівностей вищих степенів
Тому доцільно розглянути та ознайомитись з різноманітними методами та прийоми розв’язування раціональних нерівностей вищих степенів. Це дозволить учням розв’язувати, здавалося б, складні нерівностей просто, зрозуміло і красиво, а сформовані уміння і навички знадобляться учням при розв’язуванні ірраціональних, логарифмічних, показникових та тригонометричних. нерівностей
Для досягнення мети було поставлено наступні завдання:
-проаналізувати методичну літературу з означеної теми;
-ознайомитись з теоретичними відомостями, розглянути основні теореми та методичні факти, що стосуються даної теми;
-розглянути різноманітні методи розв’язування раціональних нерівностей вищих степенів;
-навести низку прикладів розв’язування раціональних нерівностей вищих степенів різними методами.
§ 1. Теоретичні основи дослідження
1.1 Загальні відомості про раціональні нерівності
Дві функції, що поєднані між собою знаю
Розв’язком цих нерівностей називається значення
Областю визначення
Під множиною розв’язків системи нерівностей розуміють перетин множин розв’язків всіх нерівностей, що входять в цю систему.
Говорять, що нерівність еквівалентна системі нерівностей, якщо множина її розв’язків співпадає з множиною розв’язків цієї системи. [1: 136]
1.2 Теореми про рівносильність нерівностей
Дві нерівності з одною змінною
Теорема 1. Якщо з однієї частини нерівності перенести до іншої доданок із протилежним знаком, то дістанемо нерівність, рівносильну початковій.
Теорема 2. Якщо до обох частин нерівності
Теорема 3.Якщо обидві частини нерівності
Таким чином, можемо записати:
Зауваження.На практиці при застосуванні 2 і 3 теорем найчастіше замість функції
§ 2. Приклади розв’язування раціональних нерівностей вищих степенів різними методими
2.1Розвязування раціональних нерівностей вищих степенів методом інтервалів
Будемо розглядати розв’язання раціональних нерівностей методом інтервалів. Існують різні схеми реалізації цього методу. Розглянемо одну з цих схем, допускаючи, що розв’язується нерівність
1.Перенести всі члени нерівності вліво:
2.Ліву частину отриманої нерівності привести до спільного знаменника:
3.Багаточлени
При скороченні треба мати на увазі, що:
4. Виключити з розкладення нелінійні множники. Це виключення виконується таким чином.
Якщо в розкладенні є множник,
Якщо в розкладенні є множник