Смекни!
smekni.com

Предмет вивчення теорії ймовірностей (стр. 1 из 2)

Реферат на тему: Предмет вивчення теорії ймовірностей

Виконала:

учениця 9-Б класу

Перепелиця Юлія

Валки, 2011


Вступ

Перші роботи, у яких зароджувалися основні поняття теорії ймовірностей, являли собою спроби створення теорії азартних ігор (Кардано, Гюйгенс, Паскаль, Ферма й інші в XVI-XVII вв.).

Наступний етап розвитку теорії ймовірностей зв'язаний з ім'ям Якоба Бернуллі (1654—1705). Доведена ним теорема, що одержала згодом назву «Закону великих чисел», була першим теоретичним обґрунтуванням накопичених раніше фактів. Подальшими успіхами теорія ймовірностей зобов'язана Муавру, Лапласові, Гаусу, Пуассонові й ін.

Новий, найбільш плідний період зв'язаний з іменами П.Л. Чебишева (1821 —1894) і його учнів А.А. Маркова (1856—1922) і А.М. Ляпунова (1857—1918). У цей період теорія ймовірностей стає стрункою математичною наукою. Її наступний розвиток зобов'язаний у першу чергу російським і радянським математикам (С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Б.В. Гнеденко, Н.В. Смирнов і ін.). В даний час ведуча роль у створенні нових галузей теорії ймовірностей також належить радянським математикам.

1. Основи азартних ігор

Азартні ігри побудовані на математичних закономірностях. В основі всього того, що відбувається за ігровим столом, лежить теорія імовірності. Доти, поки ви не досягнете рівня експерта, наприклад, кращі шанси на виграш завжди будуть у казино. Невдачливий гравець може проводити за столом багато годинник, виграючи і програючи невеликі суми, не розуміючи при цьому, що більший сумарний час гри збільшує імовірність і розміри його загального програшу.

Хоча математична перевага у всіх іграх майже завжди на стороні казино, утішним фактом є те, що інтелектуальний гравець уміє звести цю перевагу до мінімуму.

Чому ж казино йдуть на це? Порозумівається всі дуже просто. Більшість гравців грає відверто погано, залишаючи в казино надзвичайні програші. І якщо ви для себе вирішуєте витратити визначену кількість часу на обмірковування ігрової стратегії і не лінуєтеся робити необхідні розрахунки, ви тим самим надаєте можливість менш витонченим гравцям оплачувати вашу гру, тому що в цей час вони грають самі.

Математика азартних ігор

Більшість ігор казино є предметом математичного аналізу. Тільки гри із суб'єктивним фактором, такі як чи покер ставки на спортивних тоталізаторах представляють проблему. Будь-яка гра, у якій гравець протистоїть круп'є, може бути піддана аналізу з метою вироблення оптимальної ігрової стратегії. У цих іграх може бути тільки одна правильна відповідь на стратегічне питання. У них не існує сірих чи тонів множинності думок. Так, іноді два різних джерела можуть мати різні точки зору щодо чи гри цифри. Часом це приводить до помилок, тому я не претендую на власну непогрішність і точність у прийнятті рішень. Однак дуже часта відсутність елементарних знань математики азартних ігор визначає невдачу.

Незважаючи на значні зусилля, прикладені мною для складання рекомендацій з вироблення оптимальних ігрових стратегій, я б усе-таки радив усім гравцям діяти більш самостійно при математичному розрахунку своїх шансів і плануванні дій. Ви будете почувати себе більш комфортно і впевнено за ігровим столом, якщо свою ігрову стратегію ви розробили самі. Будь-яка книга по теорії імовірності здатна дати вам вичерпні інструменти і знання для проведення розрахунків. Математичний аналіз може бути досить простим для таких ігор як Рулетка, Кісти.

2. Біологічна мінливість і імовірність

У біології і медицині мінливість виражена набагато сильніше і має більше наукове значення. При повторних вимірах ваги того самого людини, проведених в одне і теж час, можна легко знайти невеликі коливання результатів, однак вони не представляють особливого інтересу. Якщо ж повторні виміри проводити через короткі проміжки часу, то можна знайти коливання внаслідок чи додатка утрати ваги за рахунок прийому їжі, подиху, виділень і т.д. Усі ці аспекти, безумовно, мають важливе значення з біологічної точки зору, однак у порівнянні з більш значними змінами, що відбуваються, скажемо, за чи тиждень за місяць і зв'язаними з загальним процесом росту, такі короткочасні зміни можуть вважатися несуттєвими. Пішовши далі і порівнявши значення відповідних чисельних показників у різних індивідуумів, ми негайно знайдемо мінливість усередині популяції. Відомо, що окремі представники будь-якого даного виду можуть значно відрізнятися друг від друга по чи вазі розмірам тіла, і звичайно ідея опису популяції середніми показниками не зустрічає серйозних заперечень. Вага і ріст - настільки знайомі для більшості з нас показники, що усереднені криві чи рости таблиці середньої ваги для людей визначеного віку, пола і рости приймають за стандарти, що дозволяють судити про ступінь відхилення від норми в кожнім конкретному випадку.

Однак навіть у таких простих показників, як ріст і вага, спостерігаються іноді дуже великі коливання внаслідок звичайної природної мінливості. Автору відомо про одне дослідження ваги дитини протягом перших десяти днів перебування в родильному будинку, що проводилося для порівняння результатів годівлі грудьми і результатів штучної годівлі з урахуванням таких факторів, як вага дитини при народженні, його підлога, вік матері і т.п. Крива середньої ваги для декількох сотень нормальних дітей, що одержували штучне харчування, протягом усього періоду дослідження безупинно піднімалася нагору. Середня вага дітей, що вигодовуються грудьми, у перші день-два різко падав, як і очікувалося, а потім починав швидко рости і вже через кілька днів збігався з вагою дітей–штучних.

Можна було б сказати, що це служить наочною демонстрацією здатності організму переборювати первісну недостачу їжі і досягати стійкої швидкості росту. Однак примітно те, що, хоча на основі кривих для середніх значень можна спробувати зробити якісь загальні висновки, дані, записані для окремих дитин, виявляються зовсім хаотичними: одні діти безупинно додавали у вазі, інші безупинно втрачали, а в інших вага те зростав, те знижувався, тобто спостерігалися різкі коливання. При цьому ніякому очевидному зв'язку між цими різними випадками і різними факторами, що досліджувалися, знайти не удалося. Упорядкованість і регулярність легко виявляються лише в середніх значеннях, узятих по великому числу індивідуумів. Тому при використанні загальної кривої середньої ваги як стандарт для судження про розвиток окремого немовляти необхідно виявляти велику обережність.

Винятково важливо враховувати можливі відхилення, щоб основна математична модель визначала не тільки середню вагу, яку варто очікувати при даному віці дитини і при даному режимі харчування, але і дозволяла вимірити наявне відхилення від норми.

Як добре відомо, одним із самих плідних способів опису характеру мінливості є застосування відповідного закону розподілу, що визначає імовірність того, що результат виміру якого-небудь параметра індивідуума, обраного випадковим образом, буде мати будь-яке задане значення або лежати у визначеному інтервалі значень. Такі безупинні параметри, як ріст, вага і т.п., нерідко задовільно описуються кривої нормального, чи гаусового розподілу.

Нормальний розподіл є одним з найпростіших з погляду математики. Крім того, існує ряд теоретичних основ, що дозволяють припускати, що багато розподілів, що зустрічаються на практиці, повинні бути близькі до нормального, і це припущення дійсне часто підтверджується. Цих розумінь цілком достатньо для того, щоб нормальний розподіл зайняв важливе положення в теорії ймовірностей і математичній статистиці.

Для опису дискретних величин у тих випадках, коли мається обмежене число альтернативних спостережень (наприклад, таких, як число дитяти-альбіносів у родині даного складу), може виявитися придатним біноміальний розподіл. Якщо мається п індивідуумів і імовірність того, що який-небудь з них має визначену ознаку, дорівнює р (незалежно від інших індивідуумів), то імовірність спостереження r індивідуумів з даною ознакою має біноміальний розподіл.

Розподіл числа радіоактивних часток, що випускаються за даний проміжок часу деякою великою масою радіоактивної речовини, числа дорожньо-транспортних випадків, що відбуваються за даний проміжок часу за певних умов, чи числа лейкоцитів, що спостерігаються в одному квадраті гемоцитометру, найкраще описується законом Пуассона.

Ми привели всього три найбільш розповсюджених і найбільш прості розподіли з числа зустрічавшихся на практиці, однак з їх допомогою можна охопити разюче велика безліч випадків природної мінливості в біології і медицині, не звертаючи до більш складних описів. Деяке представлення про зміст і можливості теорії розподілів можна почерпнути з книг по теорії ймовірностей (див., наприклад, книгу Феллера) чи математичній статистиці (див., наприклад, книгу Кендалла і Стюарта).

Застосування розподілів ймовірностей - аж ніяк не новий спосіб опису біологічної мінливості. Кетле, що працював спочатку в області астрономії і метеорології, був, очевидно, першим, хто застосував нормальний розподіл для опису біологічного матеріалу (він увів його при вивченні розподілу людей по росту, про що вже говорилося вище). Пізніше Фрэнсис Гальтон широко застосовував криву нормального розподілу при статистичному дослідженні спадковості, і вона зіграла фундаментальну роль у глибокій роботі Карла Пирсона з питань біометрії, написаної наприкінці минулого століття. З тих пір різні типи розподілів почали застосовувати в найрізноманітніших областях біології - у молекулярній біології, таксономії, екології, генетику, психології і т.д.

Як з історичної, так і з логічної точки зору розподілу ймовірностей являють собою просто більш зроблені варіанти математичних моделей. Вони дозволяють звести величезне різноманіття спостережень до одного закону, якому можна охарактеризувати дуже невеликим числом параметрів: двома у випадку нормального розподілу, одним-єдиним у випадку пуасоновського розподілу і т.д. Це дає можливість більш точно описати явища, що змінюються, і полегшує їхнє розуміння.