Таким образом, мы получили следующие основные элементарные сведения о траекториях. Траектория может быть: 1) состоянием равновесия, 2) замкнутой траекторией, 3) незамкнутой (несамопересекающейся) траекторией. Эти сведения являются предварительными, так как возможный характер незамкнутых траекторий остается невыясненным.
6. Сопоставление геометрической интерпретации в пространстве R3 и геометрической интерпретации на фазовой плоскости
Как мы уже указывали, каждому решению системы (I) соответствует в
Траектория, очевидно, является проекцией этой интегральной кривой на плоскость (x, у). Из леммы 4 следует, что в траекторию проектируются те и только те интегральные кривые пространства
Lесть состояние равновесия М (а, Ь). Соответствующая интегральная кривая в
2) Lесть замкнутая траектория, соответствующая решению с периодом
3) L— незамкнутая траектория. Каждая интегральная кривая, соответствующая траектории L, при любом сдвиге вдоль оси t, отличном от нулевого, переходит в другую интегральную кривую (рис. 4).
Рис. 3. Рис. 4.
Подчеркнем следующие элементарные факты. Точка, двигаясь по траектории, отличной от состояния равновесия (т. е. «изображающая точка» с координатами х =
7. Направление на траектории. Изменение параметризации
Пусть L— траектория системы (I) и
х =
— какое-нибудь соответствующее ей решение.
Мы введем на траектории Lопределенное направление в качестве положительного. Именно, будем считать положительным направлением на Lнаправление в сторону возрастания t. При таком определении можно сказать, что положительное направление в каждой точке траектории Lсовпадает с направлением вектора, заданного в этой точке системой (I).
Пользуясь «кинематической» интерпретацией, можно сказать, что положительное направление на Lесть то направление, в котором точка с координатами х =
Введенное таким образом положительное направление на Lне зависит от того, какое из решений, соответствующих траектории L, мы возьмем (так как все такие решения получаются одно из другого заменой tна
В дальнейшем мы будем обычно опускать слово «положительное», т. е. под направлением на траектории L системы (I) мы будем подразумевать положительное направление, определяемое (или, как говорят, индуцируемое) на L этой системой.
Рассмотрим наряду с системой (I) систему
Векторное поле системы (I') получается из векторного поля системы (I), если изменить направление каждого вектора на противоположное (не меняя длин векторов).
Непосредственной проверкой устанавливается, что каждому решению
х =
системы (I) соответствует решение
х =
системы (I'). Отсюда очевидно, что системы (I) и (1') имеют одинаковые траектории, но индуцируют на траекториях противоположные направления. Таким образом, переход от системы (I) к системе (I') можно рассматривать, как изменение параметризации на траекториях, именно, как замену параметра tпараметром —t.
Рассмотрим более общий случай изменения параметризации на траекториях системы (1). Пусть f(х, у) — функция класса C1 , заданная в области G. Предположим, что функция f(х, у) отлична от нуля во всех точках области G, отличных от состояний равновесия системы (1), и имеет в них один и тот же знак.
Рассмотрим наряду с системой (I) систему
В силу предположений, сделанных относительно функции f(х, у), очевидно, что состояния равновесия системы (I) совпадают с состояниями равновесия системы (I*).
Лемма 8. Если
х =
есть решение системы (I), причем соответствующая ему траектория отлична от состояния равновесия, то существует монотонная функция класса C1 (t) =
является решением системы (I*).
Доказательство. Задавая какое-нибудь начальное значение t0, t0
Так как f(х, у) не обращается в нуль в точках, отличных от состояний равновесия, то s(t) является монотонной функцией класса С1 , определенной на интервале (
Поэтому
Последние соотношения показывают, что функции (26) являются решением системы (I*). Нетрудно видеть, что (
Уравнения (25) и (26) являются, очевидно, различными параметрическими уравнениями одной и той же траектории. Поэтому из леммы 8 следует, что динамические системы (I) и (I*) имеют одни и те же траектории, но с различными параметризациями на них. При переходе от системы (I) к системе (I*) направления на траекториях остаются неизменными, если f(х, у) > 0, и меняются, если F(x,y)<0.
Предположим теперь, что функция f(х, у) может обращаться в нуль в точках, отличных от состояний равновесия системы (I), а также может менять знак в области G. Рассмотрим снова систему (I*). Очевидно, состояниями равновесия системы (I*) являются все состояния равновесия системы (I), а также все точки области G, которые не являются состояниями равновесия системы (1), но в которых f(х, у) = 0.