Смекни!
smekni.com

Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра экономической информатики

Курсовая работа

по дисциплине «Численные методы»

на тему: «Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений»

Выполнил

Студент: Обухова Т.С.

Факультет ФБ

Группа ФБИ-72

Преподаватель: Сарычева О.М.

Новосибирск

2009


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 Постановка задачи. Математическое описание методов

1.1 Метод простой итерации

1.2 Метод Ньютона

2 Описание программного обеспечения

3 Описание тестовых задач

4 Анализ результатов, выводы

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


ВВЕДЕНИЕ

Очень часто в различных областях экономики приходится встречаться с математическими задачами, для которых не удается найти решение классическими методами или решения выражены громоздкими формулами, которые не приемлемы для практического использования. Поэтому большое значение приобрели численные методы. В большинстве случаев численные методы являются приближенными, так как с их помощью обычно решаются задачи, аппроксимирующие исходные. В ряде случаев численный метод строится на базе бесконечного процесса, который в пределе сводится к искомому решению. Однако реально предельный переход не удается осуществить, и процесс, прерванный на некотором шаге, дает приближенное решение. Кроме того, источниками погрешности являются несоответствие математической модели изучаемому реальному явлению и погрешность исходных данных.

Решение систем нелинейных алгебраических уравнений – одна из сложных и до конца не решенных задач. Даже о расположении и существовании корней систем нелинейных уравнений почти ничего нельзя сказать. Большинство методов решения систем нелинейных уравнений сходятся к решению, если начальное приближение достаточно близко к нему, и могут вообще не давать решения при произвольном выборе начального приближения. Условия и скорость сходимости каждого итерационного процесса существенно зависят от свойств уравнений, то есть от свойств матрицы системы, и от выбора начальных приближений.

Численный метод, в котором производится последовательное, шаг за шагом, уточнение первоначального грубого приближения решения, называется итерационным. Итерационные методы дают возможность найти решение системы как предел бесконечного вычислительного процесса, позволяющего по уже найденным приближениям к решению построить следующее, более точное приближение. Плюсом таких методов является самоисправляемость и простота реализации на ЭВМ. В точных методах ошибка в вычислениях приводит к накопленной ошибке в результате, а в случае сходящегося итерационного процесса ошибка в каком-либо приближении исправляется в последующих итерациях, и такое исправление требует, как правило, только нескольких лишних шагов единообразных вычислений. Для начала вычислений итерационных методом требуется знание одного или нескольких начальных приближений к решению.

В данной курсовой работе необходимо рассмотреть два из множества существующих итерационных методов - метод простой итерации и метод Ньютона (классический) для решения систем линейных алгебраических уравнений.

1 Постановка задачи. Математическое описание методов

При определенных условиях ЭО в установившемся режиме описывается системой нелинейных АУ вида . Если при этом входной сигнал

известен, то для определения соответствующего значения
необходимо решить систему нелинейных АУ вида:

(1)

Которая в нашем случае представляет собой систему из двух нелинейных уравнений с двумя неизвестными вида:

(2)

Обобщенный алгоритм решения системы (1) определяется формулой

,

где:

G – вектор-функция размерности n, которая определяется способом построения итерационного процесса;

p – количество предыдущих точек значений X, используемых в данном итерационном процессе.

Если в итерационном процессе используется только одна предыдущая точка (p=1), то


Рассмотрим подробнее два таких метода – метод простой итерации и метод Ньютона.

1.1 Метод простой итерации

Пусть дана система (2), корни которой требуется найти с заданной точностью.

Предположим, что система допускает лишь изолированные корни. Число этих корней и их приближенные значения можно установить, построив кривые

и
и определив координаты их точек пересечения (либо из существующих представлений о функционировании экономического объекта).

Для применения метода итераций система (2) приводится к виду

(3)

Функции

и
называются итерирующими. Алгоритм решения задается формулами:

(n=0, 1, 2, …),

где

- некоторое начальное приближение.

Для приведения системы (2) к виду (3) используем следующий прием. Положим

(
). (4)

Коэффициенты

найдем как приближенные решения следующей системы уравнений:

Характеристики метода:

1. Сходимость.

Локальная, то есть метод сходится при выборе начальных приближений достаточно близко к точному решению. Насколько близко необходимо выбирать начальное приближение, исследуем в практической части.

2. Выбор начального приближения

Начальные значения переменных должны выбираться близко к точным.

3. Скорость сходимости линейная.

4. Критерий окончания итераций.

Определяется по формуле:

,

1.2 Метод Ньютона

Пусть дана система (2). Согласно методу Ньютона последовательные приближения вычисляются по формулам

Где

,
,

а якобиан

Характеристики метода:

1. Сходимость.

Локальная, то есть метод сходится при выборе начальных приближений достаточно близко к точному решению. Насколько близко необходимо выбирать начальное приближение, исследуем в практической части.

2. Выбор начального приближения

Начальные значения переменных должны выбираться близко к точным.

3. Скорость сходимости квадратичная.

4. Критерий окончания итераций.

Аналогично методу простой итерации:

,

2 Описание программного обеспечения

метод итерация ньютон нелинейное уравнение

Программное обеспечение представлено в виде двух основных модулей – mpi2.m (метод простой итерации) и kmn2.m (классический метод Ньютона) и трех вспомогательных модулей – funF.m (матрица системы), funJ.m (матрица Якоби для системы), head.m (головная программа).

Головная программа – модуль head.m

Используемые переменные:

x0 – вектор начальных приближений;

edop – допустимая ошибка вычислений;

Текстпрограммы:

Исходная система уравнений – модуль funF.m

Входные параметры:

x – вектор - текущее приближение к решению;

Выходные параметры:

F – вектор значений функции, полученных в точке x

Текст программы:

function [F]=funF(x)

F=[

;
];

В векторе содержатся функции F1 и F2 по строкам.

Матрица Якоби – модуль funJ.m

Входные параметры:

x – вектор - текущее приближение к решению;

Выходные параметры:

J – матрица Якоби, полученная в точке x

Текст программы: