Докажем для примера (7).
Пусть (xk, yk) → (х0, у0) ((xk, yk) ≠ (х0, у0)); тогда
(9)Таким образом, предел в левой части (9) существует и равен правой части (9), а так как последовательность (xk, yk) стремится к (х0, у0) по любому закону, то этот предел равен пределу функции f (x, y)∙φ (x, y) в точке (х0, у0).
Теорема. если функция f (x, y) имеет предел, не равный нулю в точке (х0, у0), т.е.
то существует δ > 0 такое, что для всех х, у, удовлетворяющих неравенствам
0 <
< δ, (10)она удовлетворяет неравенству
(12)Поэтому для таких (x, y)
т.е. имеет место неравенство (11). Из неравенства (12) для указанных (x, y) следует
откуда при A> 0 и приA< 0 (сохранение знака).
По определению функция f(x) = f (x1, …, xn) = Aимеет предел в точке
x0 =
, равный числу А, обозначаемый так:
(пишут еще f(x) → A (x → x0)), если она определена на некоторой окрестности точки x0, за исключением, быть может, ее самой, и если существует предел
какова бы ни была стремящаяся к x0 последовательность точек хk из указанной окрестности (k = 1, 2, ...), отличных от x0.
Другое эквивалентное определение заключается в следующем: функция f имеет в точке x0 предел, равный А, если она определена в некоторой окрестности точки x0, за исключением, быть может, ее самой, и для любого ε > 0 найдется такое δ > 0, что
(13)для всех х, удовлетворяющих неравенствам
0 < |x – x0| < δ.
Это определение в свою очередь эквивалентно следующему: для любого ε > 0 найдется окрестность U (x0) точки x0 такая, что для всех х
U(x0), х ≠ x0, выполняется неравенство (13).Очевидно, что если число А есть предел f(x) в x0, то А есть предел функции f(x0 + h) от h в нулевой точке:
и наоборот.
Рассмотрим некоторую функцию f, заданную во всех точках окрестности точки x0, кроме, быть может, точки x0; пусть ω = (ω1, ..., ωп) – произвольный вектор длины единица (|ω| = 1) и t > 0 – скаляр. Точки вида x0 + tω (0 < t) образуют выходящий из x0 луч в направлении вектора ω. Для каждого ω можно рассматривать функцию
(0 < t < δω)от скалярной переменной t, где δω есть число, зависящее от ω. Предел этой функции (от одной переменной t)
если он существует, естественно называть пределом f в точке x0 по направлению вектора ω.
Будем писать
, если функция f определена в некоторой окрестности x0, за исключением, быть может, x0, и для всякого N> 0 найдется δ > 0 такое, что |f(x)| >N, коль скоро 0 < |x – x0| < δ.Можно говорить о пределе f, когда х → ∞:
(14)Например, в случае конечного числа А равенство (14) надо понимать в том смысле, что для всякого ε > 0 можно указать такое N> 0, что для точек х, для которых |x| > N, функция f определена и имеет место неравенство
.Итак, предел функции f(x) = f(x1, ..., хп) от п переменных определяется по аналогии так же, как для функции от двух переменных.
Таким образом, перейдем к определению предела функции нескольких переменных.
Число А называется пределом функции f(M) при М → М0, если для любого числа ε > 0 всегда найдется такое число δ > 0, что для любых точек М, отличных от М0 и удовлетворяющих условию | ММ0 | < δ, будет иметь место неравенство |f(M) – А | < ε.
Предел обозначают
В случае функции двух переменныхТеоремы о пределах. Если функции f1(M) и f2(M) при М → М0 стремятся каждая к конечному пределу, то:
а)
б)
в)
Пример 1. Найти предел функции:
Решение. Преобразуем предел следующим образом:
Пусть y = kx, тогда
Пример 2. Найти предел функции:
Решение. Воспользуемся первым замечательным пределом
ТогдаПример 3. Найти предел функции:
Решение. Воспользуемся вторым замечательным пределом
ТогдаНепрерывность функции нескольких переменных
По определению функция f (x, y) непрерывна в точке (х0, у0), если она определена в некоторой ее окрестности, в том числе в самой точке (х0, у0) и если предел f (x, y) в этой точке равен ее значению в ней:
(1)Условие непрерывности f в точке (х0, у0) можно записать в эквивалентной форме:
(1')т.е. функция fнепрерывна в точке (х0, у0), если непрерывна функция f (х0 + Δх, у0 + Δу) от переменных Δх, Δу при Δх = Δу = 0.
Можно ввести приращение Δи функции и = f (x, y) в точке (x, y), соответствующее приращениям Δх, Δу аргументов
Δи = f (х + Δх, у + Δу) – f (x, y)
и на этом языке определить непрерывность f в (x, y): функция f непрерывна в точке (x, y), если
(1'')Теорема. Сумма, разность, произведение и частное непрерывных в точке (х0, у0) функций f и φ есть непрерывная функция в этой точке, если, конечно, в случае частного φ (х0, у0) ≠ 0.
Постоянную с можно рассматривать как функцию f (x, y) = с от переменных x, y. Она непрерывна по этим переменным, потому что
|f (x, y) – f (х0, у0) | = |с – с | = 0 0.Следующими по сложности являются функции f (x, y) = х и f (x, y) = у. Их тоже можно рассматривать как функции от (x, y), и при этом они непрерывны. Например, функция f (x, y) = х приводит в соответствие каждой точке (x, y) число, равное х. Непрерывность этой функции в произвольной точке (x, y) может быть доказана так: