Прежде чем применять лемму 2.5 к доказательству неравенства для
, удобно уточнить её для случая, при котором состоит из одного простого числа . Пусть есть -разрешимая группа с верхним -рядом (2.2) . Тогда лемма 2.5, применённая к группе , показывает, что если - элемент группы , не входящий в , то трансформирование элементом индуцирует в нетождественный автоморфизм. Необходимое уточнение состоит в замене группы группой , где - подгруппа Фраттини группы . Теперь - -группа, и таким образом - элементарная абелева -группа. Ясно поэтому, что автоморфизм группы , индуцированный группы , тождественный. Таким образом, множество элементов группы , которое тождественно трансформирует , является нормальной подгруппой группы , такой, что . По определению фактор группа не может быть -группой, отличной от 1, так что если , то группа должна содержать элемент , не входящий в и порядка, взаимно простого . Тогда индуцирует автоморфизм группы порядка, взаимно простого с . Но автоморфизм -группы, тождественоой по модулю подгруппе Фраттини, имеет порядок, равный степени числа . Таким образом, индуцирует в нетождественный автоморфизм, что противоречит определению группы . Значит, , что и требовалось. Таким образом:Лемма 2.11. Если
есть -разрешимая группа с верхним -рядом (2.2) и если - подгруппа Фраттини группы , то автоморфизмы группы , которые индуцированы трансформированиями элементами группы , представляют точно.Следствие 2.12.
.По лемме группа
не обладает неединичной нормальной -подгруппой, и последующие члены её верхнего -ряда представляют собой фактор группы по соответствующих членов верхнего -ряда группы .Теорема 2.13. Для любой
-разрешимой группы(I)
(II)
Мы можем использовать индукцию по порядку группы
и предположить, что обладает только одной минимальной нормальной подгруппой . Очевидно, мы можем также предположить, что , откуда последствию из леммы 2.11 , а, следовотельно, , и - элементарная абелева -группа. Теперь, полагая , мы получим, что , так что по предположению индукции заключаем, что . Если - группа порядка , то порядок её группы автоморфизмов равентак что
. Согласно лемме 2.11, группа изоморфна некоторой подгруппе группы , так что , откуда . Таким образом,что и требовалось.
С другой стороны согласно следствию 1 леммы 2.7,
содержит центр силовской -подгруппы группы , так что . Так как , то индукция для (II) проводится сразу.Неравенства, полученные сдесь, отнюдь не являются наилучшими. Для нечетных
их значительно можно усилить. Однако при теорему 2.13 улучшить нельзя.