Смекни!
smekni.com

Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам (стр. 17 из 17)

(4) если

и
, то
.

Лемма 4.8. Тогда и только тогда подгруппа

является добавлением к нормальной подгруппе
в группе
, когда
и
.

Следствие 4.9. (1) Если

- главный фактор конечной группы
, то
и

(2) Если

- главный фактор порядка
конечной группы
, то
- циклическая группа порядка, делящего
.

Теорема 4.10. (1) Если существует натуральное число

такое, что
, то группа
нильпотентна.

(2) Ступень нильпотентности нильпотентной группы

есть наименьшее натуральное число
, для которого

Лемма 4.11. Пусть

. Тогда:

(1) если

, то либо
, либо
и
;

(2) если

абелева и
для некоторой собственной подгруппы
группы
, то
;

(3) если

и
, то
.

[1] Шеметков Л. А.//Докл. АН СССР. 1968. Т. 178, № 3. С. 559-662.

[2] Шеметков Л. А. Формации конечных групп. М., 1978.

[3] Hall Ph.//J. London Math. Soc. 1937. Vol. 12. P. 201-204.

[4] Черников С. Н. Группы с заданными свойствами системы подгрупп. М., 1980.

[5] Ведерников В.А. Вполне факторизуемые формации конечных групп // Вопросы алгебры. Вып.5. - Минск: Изд-во "Университетское", 1990. - С. 28-34.

[6] Ведерников В.А. Формации конечных групп с дополняемыми подформациями длины 3 // Вопросы алгебры. Вып.6. - Минск: Изд-во "Университетское", 1990. - С. 16-21.

[7] Скиба А.Н. О формациях с заданными системами подформаций // Подгрупповое строение конечных групп. - Мн.: Наука и техника, 1981. - С. 155-180.

[8] Скиба А.Н., Шеметков Л.А. Формации алгебр с дополняемыми подформациями // Укр. мат. журн. - 1991. - Т. 43, № 7, 8. - С. 1008-1012.

[9] Скиба А.Н. Алгебра формаций // Мн.: Беларуская навука, 1997. - 240 c.

[10] Черников С.Н. Группы с заданными свойствами системы подгрупп // М.: Наука, 1980. - 384 c.

[11] Guo Wenbin. Local formations in which every subformation of type

has a complement // Chinese science Bulletin. - 1997. - Vol. 42, № 5. - P. 364-368.

[12] Hall P. A characteristic property of soluble groups // J.London Math. Soc. - 1937. - 12. - P. 198-200.

[13] Левищенко С. С.//Некоторые вопросы теории групп. Киев, 1975. С. 173-196.

[14] Huppert B. Endliche Gruppen. I. Berlin-Heidelberg-New York, 1976.

[15] Монахов В. С.//Конечные группы. Минск, 1975. С. 70-100.


ЗАКЛЮЧЕНИЕ

В данной дипломной работе изложены основы теории нильпотентной длины конечной разрешимой группы, проведено исследование величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. В работе рассмотрены следующие вопросы: подгруппа Фиттинга конечной разрешимой группы и ее свойства; нильпотентная длина и другие инварианты конечной разрешимой группы; признаки разрешимости конечной группы с извесными добавлениями к максимальным погруппам; нахождение величины нильпотентной длины разрешимой группы с известными добавлениями к максимальным подгруппам.

В первой главе "Подгруппа Фиттинга и ее свойства" изучены свойства подгруппы Фиттинга. Доказаны теоремы К. Дёрка и Монахова В.С.

Во второй главе "

-длина
-разрешимой группы" даны необходимые определения и доказана теорема.

В главе "Группа с нильпотентными добавлениями к подгруппам" доказана важная теорема:

Теорема. Конечная неразрешимая группа с нильпотентными добавлениями к несверхразрешимым подгруппам изоморфна

или
, где
- нильпотентная группа, а
и
- простые числа.

Также доказано следствие из этой теоремы.

Следствие. Конечная неразрешимая группа, в которой все подгруппы непримарного индекса сверх разрешимы, изоморфна

или
, где
-
-группа, либо
, где
-
-группа.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] В.А. Белоногов. Задачник по теории групп. М.: Наука, 2000.

[2] С.С.Левищенко. //Некоторые вопросы теории групп. Киев, 1975. С. 173-196.

[3] В.С.Монахов. Введение в теорию конечных групп и их классов. Гомель: Гомельский ун-т им. Ф.Скорины. 1993.

[4] В.С.Монахов. Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам.//Весцi АН Беларусi фiз-мат навук. 1993, № 3. С. 27-29.

[5] М.В.Селькин. Максимальные подгруппы в теории классов конечных групп. Мн.: Беларуская навука. 1997.

[6] М.Холл. Теория групп. М.: Мир, 1962.

[7] Л.А.Шеметков. Формации конечных групп. М., 1978.