Из общих соображений нумерологии, раздвоение, характеризуемое числом 2, связанным с понятиями полярности, изменения, отрицания и т.д., должно смениться неким синтезом, в котором выявившееся противоречие двух пониманий числа будет, используя терминологию Гегеля, снято. Другими словами, речь идет о переходе от числа 2 к числу 3=2+1. Есть и другой подход к развитию понятия о числе, связанный с продолжением процесса дифференциации, а именно понятие порядкового числа можно подразделить на два новых понятия, условно называемых горизонтальными и вертикальными числами. Горизонтальные порядковые числа связываются с процессами, в которых происходят по преимуществу количественные изменения, не затрагивающие сущности системы в процессе ее движения, изменения (разумеется, это идеализация, реально таких процессов не бывает). Вертикальные числа связываются с процессами, которые можно условно назвать эволюционными (в чистом виде они тоже не существуют, и речь идет лишь о преобладающей тенденции, сложившейся в современной эзотерике). Вертикальные порядковые числа удобно называть уровнями, планами или просто этажами. Систему уровней иногда интересно прочесть в порядке, противоположном заданному. Это дает некоторую новую систему уровней или новое порядковое вертикальное число. Так, от диадической системы внутреннего и внешнего можно перейти к такой, которая начинается с внешнего, а завершается внутренним. В астрологии с этим связаны два направления обхода Зодиака, а в более общем контексте - эволюция и инволюция.
В связи с этим интересно применить грамматический подход к нумерологии. Порядковые числа в силу динамичности часто ассоциируются с глаголами, ибо глагол обозначает процессуальный признак предмета, состояние как процесс или действие; или же эти числа соотносятся с прилагательными, обозначающими качества предметов, причем особенностью прилагательных во многих языках является наличие у них степеней сравнения. Глаголы обычно соответствуют горизонтальным порядковым числам, а прилагательные - вертикальным. Но в грамматике существует особая глагольная форма - причастие, имеющее наряду с признаками глагола качества прилагательного и указывающее на действие, обладающее качеством. Тем самым причастия соответствуют как бы порядковым числам, рассматриваемым с некоторой новой точки зрения. Однако класс чисел, соответствующий причастиям, еще конкретно не выявлен, что указывает на то, что метанумерология находится пока в зачаточном состоянии, которое можно характеризовать как воплощение идеи числа, но не более того. Количественные же числа естественным образом связываются с существительными, грамматически выражающими значение предметности. Таким образом, некоторые нумерологические категории параллельны грамматическим. Из сказанного видно, что само понятие числа можно изучать и анализировать методами самой же нумерологии, продвигаясь к более глубокому его пониманию. Новые знания, полученные при таком анализе, можно потом применять к усовершенствованию самой нумерологии как науки. Такой подход в математике называется рекурсивным, он может служить основой для строгого построения нумерологии как современной науки.
Перейдем теперь к интерпретации некоторых чисел. Начнем с числа 1. С ним естественным образом связываются такие понятия, как начало, Абсолют, потенциал, сотворение, импульс, тождество, единство, идея, добро, свет, семя, точка, атом, Солнце, индивидуальность, авторитарность, жизненная сила, активность, энергия, тезис, центр, закон, порядок (точнее соблюдение закона), сущность, зародыш, замкнутость, одиночество, правая сторона, мужское начало и т.п. Это лишь немногие подходящие понятия, раскрывающие разные стороны фундаментального общего понятия, которое символизируется числом 1. Интересно отметить, что в древности единица вовсе не считалась числом, числа начинались с двойки. Это связано именно с фундаментальностью и уникальностью числа 1. Что касается числа 1 с порядковой точки зрения, то оно связывается с первым, начальным шагом любого процесса, с его инициированием.
Переход от числа 1 к числу 2 определяется своего рода отрицанием некоторых свойств, приписываемых числу 1, но отрицанием не формальным (больше напоминающим уничтожение), а диалектическим. Поэтому с числом 2 обычно связывают такие понятия, как разделение (отрицание единства), разность потенциалов (в противоположность единице как потенциалу), анализ, изменение, различие, противоположность, дифференциация, двойственность, дискуссия (как столкновение двух точек зрения), противоречие, ориентация, выбор, противостояние, беспорядок (точнее отрицание закона), антитеза, отражение, разомкнутость, неопределенность, колебание, приращение, реакция, линия, пассивность, пропорция, отношение, зло (как отрицание добра), темнота, левая сторона, женское начало и т. д. С числом 2 связывают также понятия воплощения (как отрицание понятия Абсолюта, идеи), первоматерии, неоформленной материи, материализации в самом общем смысле этого слова, выявления, проявления. С порядковой точки зрения, число 2 связывается со вторым шагом процесса, с двумя направлениями движения, а также с глаголами разделять, отрицать, отбрасывать, различать, противопоставлять и др.
Чтобы интерпретировать числа большие, 1 и 2, нужно подробнее рассмотреть методы построения этих интерпретаций. Таких методов очень много, опишем лишь некоторые из них. В древности интерпретации чисел часто бывали плодом озарения, приходящего после длительного сосредоточенного размышления. Это было связано с недифференцированностью науки. Озарение часто приносило поразительно глубокие результаты, но в силу самой своей сущности давало довольно "непонятные", с точки зрения разума, интерпретации. Именно эти "непонятные", логически трудно объяснимые интерпретации заслуживают особо тщательного изучения. Их можно найти в старинных трактатах (и в некоторых их современных пересказах), иногда в работах современных авторов, например в упомянутой "Каббале чисел". Другой способ интерпретации во многом противоположен первому (причем эти способы, естественно, соответствуют числам 1 и 2, а переход от одного к другому соответствует отрицанию, описываемому переходом от 1 к 2). Это дедуктивный способ, позволяющий строить интерпретации одних, обычно больших чисел, исходя из уже известных интерпретаций других, обычно меньших. Выше уже говорилось о переходе от числа 1 к числу 2=1+1. Вообще, переходу от числа n к числу n+1 соответствует диалектическое отрицание соответствующих понятий. Под диалектическим (в отличие от формального) отрицанием понятия понимается переход от одного понятия к другому, противоположному, но лишь по некоторым параметрам. Так, если число 2 рассматривается в связи с понятием разделения, то его отрицанием может быть как число 1 (абсолютное единство), так и число 3=2+1, воссоздающее былое единство числа 1, но на качественно новом уровне (здесь появляется понятие уровня) и связываемое с такими понятиями, как воссоединение (т.е. объединение после разделения), гармония (как разрешение противоречия), любовь (как отрицание вражды), синтез (в противоположность анализу) и т.д.
Переход от числа n к числу n+1 можно рассматривать как шаг в развитии понятия, связанного с числом n. Мы как бы включаем понятие, связанное с числом n, в цепочку из двух понятий, причем она может быть описана как некоторое отрицание. Тем самым удается свести воедино качественную и количественную стороны числа, ибо развитие понятия, соотносимого с количественной стороной, происходит в результате некоторого процесса. Цепочки понятий могут быть и более длинными. Цепочка чисел n, n+1, n+2 связана с трехстадийным процессом, а так как пониманию числа 3 соответствуют, в частности, понятия гармонии, примирения, то можно сказать, что указанная цепочка указывает путь гармонизации понятия, связанного с числом n. Далее, если переход от n к n+1 связывается с отрицанием, противопоставлением, противоречием, то последующий переход от n+1 к n+2 приводит (путем еще одного отрицания) к разрешению этого противоречия. Ясно, что по такой схеме построено отрицание отрицания (ассоциирующееся в основном с именем Гегеля, но хорошо известное еще в древности), формулируемое как триада "тезис, антитезис, синтез". Эта триада понятий получила широкое распространение в философии нового времени, но она лишь простой частный случай применения нумерологии (в данном случае использования свойств числа 3).
Более сложные цепочки, состоящие из четырех, пяти и более последовательных чисел, используются все еще довольно редко. Иногда они появляются в некоторых силлогизмах классической аристотелевой логики, но там изучению их нумерологической структуры почти не уделяется внимания. Пятичленные силлогизмы последовательно использовались в ньяя - одной из даршан (систем) индийской философии. В учении ньяя подробно анализируются все звенья этой пятичленной последовательности и то, как она может быть использована для получения нового знания. Что же касается самой нумерологии, то последовательности из четырех и более чисел можно использовать для построения интерпретаций чисел (причем очень нестандартных), но в силу недостаточной проработанности современным человеком чисел 4, 5 обычно ограничиваются диадами и триадами. Недаром и сейчас при счете предметов иногда говорят "один, два, три, много" и с числом 3 до сих пор связывают понятие множественности. В целом ряд натуральных чисел можно рассматривать как сотканный из множества цепочек всевозможной длины. Они пересекаются, накладываются друг на друга, порождая представление о ряде как о живом существе, постоянно меняющемся, пульсирующем и в то же время неизменном. Включив интересующее нас число в одну из таких цепочек, можно построить интерпретацию этого числа, основываясь на интерпретациях остальных членов цепочки. Так, в цепочке n-1, n, n+1 можно, исходя из интерпретаций чисел n-1 и n+1, указать свойства числа n.