Для используемых по отдельности средств измерений, точность которых заведомо превышает требуемую точность измерений, нормируются только пределы
допускаемого значения суммарной погрешности и наибольшие допустимые изменения метрологических характеристик. Если же точность средств измерений соизмерима с требуемой точностью измерений, то необходимо нормировать раздельно характеристики систематической и случайной погрешности и функции влияния. Только с их помощью можно найти суммарную погрешность в рабочих условиях применения средств измерений.Динамические характеристики нормируются путем задания номинального дифференциального уравнения или передаточной, переходной, импульсной весовой функции. Одновременно нормируются наибольшие допустимые отклонения динамических характеристик от номинальных.
Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах.
Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измеререний, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.
Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности.
Пределы допускаемой абсолютной основной погрешности могут задаваться либо в виде одночленной формулы
либо в виде двухчленной формулы
где
и X выражаются дновременно либо в единицах измеряемой величины, либо в делениях шкалы измерительного прибора.Более предпочтительным является задание пределов допускаемых погрешностей в форме приведенной или относительной погрешности.
Пределы допускаемой приведенной основной погрешности нормируются в виде одночленной формулы
где число
(n = 1, 0, -1, -2…).Пределы допускаемой относительной основной погрешности могут нормироваться либо одночленной формулой
либо двухчленной формулой
где
– конечное значение диапазона измерений или диапазона значений воспроизводимой многозначной мерой величины, а постоянные числа q, с и d выбираются из того же ряда, что и число р.В обоснованных случаях пределы допускаемой абсолютной или относительной погрешности можно нормировать по более сложным формулам или даже в форме графиков или таблиц.
Средствам измерений, пределы допускаемой основной погрешности которых задаются относительной погрешностью по одночленной формуле, присваивают классы точности, выбираемые из ряда чисел р и равные соответствующим пределам в процентах. Так для средства измерений с
класс точности обозначаетсяЕсли пределы допускаемой основной относительной погрешности выражаются двухчленной формулой (94), то класс точности обозначается как c/d, где числа с и d выбираются из того же ряда, что и р, но записываются в процентах. Так, измерительный прибор класса точности
характеризуется пределами допускаемой основной относительной погрешностиКлассы точности средств измерений, для которых пределы допускаемой основной приведенной погрешности нормируются по формуле (92), обозначаются одной цифрой, выбираемой из ряда для чисел р и выраженной в процентах. Если, например,
то класс точности обозначается как 0.5 (без кружка).Классы точности обозначаются римскими цифрами или буквами латинского алфавита для средств измерений, пределы допускаемой погрешности которых задаются в форме графиков, таблиц или сложных функций входной, измеряемой или воспроизводимой величины. К буквам при этом допускается присоединять индексы в виде арабской цифры. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра. Недостатком такого обозначения класса точности является его чисто условный характер.
В заключение следует отметить, что никакое нормирование погрешностей средств измерений само по себе не может обеспечить единства измерений. Для достижения единства измерений необходима регламентация самих методик проведения измерений.
Список литературы
1. Новицкий П.В., Зограф Э.Н. Оценка погрешностей измерений. – Л.: Энергия, 1983, 380 с.
2. Электрические измерения неэлектрических величин // Под ред. П.В. Новицкого. 5-е изд., перераб. и доп.-Л.: Энергия, Ленингр. отделение, 1975, 576 с.
3. Планирование эксперимента в исследовании технологических процессов // К. Хартман, Э. Лецкий, В. Шефер и др.-М.: Мир, 1977, 552 с.
4. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. - М.: Наука, 1976, 279 с.
5. Ахманов С.А., Дьяков Ю.Е., Чиркин А.С. Введение в статистическую радиофизику и оптику. – М.: Наука, 1981.
6. Стрелков С.П. Введение в теорию колебаний. – М.: Наука, 1964.
7. Гудмен Дж. Введение в Фурье-оптику / Пер. с англ. под ред. Г.И. Косоурова. – М.: Мир, 1970.
8. Оптическая обработка информации / Под ред. Д. Кейсесента; Пер с англ. под ред. С.Б. Гуревича. – М.: Мир, 1980.
9. Бурсиан Э.В. Физические приборы. – М.: Просвещение, 1984, 270 с.
10. Куликовский К.Р., Купер В.Я. Методы и средства измерений. – М.: Энергоатомиздат, 1986.
11. Аналоговые электроизмерительные приборы // Под ред. А.А. Преображенского. – М.: Высшая школа, 1979, 351 с.