Таким образом, можно сказать, что геометрия Лобачевского оказывается не более как некоторым фрагментом геометрии Евклида, только изложенным особым образом. Если взять обычный круг, внутренность его называть плоскостью, точки - точками, хорды – прямыми и объявить равными фигуры внутри круга, переводимые одна в другую преобразованиями, при которых круг переходит сам в себя и хорды - в хорды, то это и будет геометрия Лобачевского.
Так многовековые поиски доказательства аксиомы параллельных и немыслимость неевклидовой геометрии разрешились, можно сказать: в некотором пересказе некоторых элементов обычной геометрии внутри круга.
Третья геометрическая модель была дана в 1882 г. французским математиком Пуанкаре. В ней геометрия Лобачевского также представляется некоторым фрагментом геометрии Евклида, только изложенным особым образом (существенно отличным от модели Кэли-Клейна).
Но можно строить аналитическую модель геометрии, представляя точки координатами и выражая расстояние формулой в координатах.
Такую модель геометрии Лобачевского дал немецкий математик Риман в качестве частного случая общей определенной им геометрии, называемой теперь римановой. Риман при вступлении на должность в Геттингенский университет в 1854 г. прочел лекцию «О гипотезах, лежащих в основании геометрии», в которой в общих чертах определил общее понятие пространства любого числа измерений и указал общий принцип введения метрики – измерения расстояний бесконечно малыми шагами. Он также указал возможное значение его теории для физики, как бы предвидя теорию тяготения Эйнштейна.
Однако лекция осталась непонятой и была опубликована только в 1869 г., после смерти Римана.
Когда геометрия Лобачевского достаточно развита, можно на плоскости ввести координаты и дать формулу, выражающую расстояние между точками через их координаты. После этого стоит только перевернуть вывод, заявив: неевклидова геометрия – это теория, в которой точки задаются координатами и расстояния - соответствующей формулой.
2.4 Дефект треугольника и многоугольника
Учитывая, что в геометрии Лобачевского сумма углов треугольника меньше 2d, введем понятие о дефекте треугольника, который равен разности между 2d и суммой углов этого треугольника:
DABC=2d-SABC.
Нетрудно видеть, что если отрезок BD разделяет АВС на треугольники ABD и DBC, то
DABC=DABD+DDBC.
Для n-угольника дефект вводится как разность между 2d(n-2) и суммой его углов. Можно доказать вообще, что если многоугольник разбит ломаными на несколько многоугольников, то дефект полного многоугольника равен сумме дефектов его частей.
евклид лобачевский геометрия постулат
2.5 Абсолютная единица длины в геометрии Лобачевского
Таким образом, в геометрии Лобачевского подобных фигур не существует, а это связано с многочисленными осложнениями, которые кажутся очень странными для каждого, начинающего знакомиться с неевклидовой геометрией. В самом деле, из отсутствия подобия вытекает, что треугольник вполне определяется своими тремя углами (два треугольника с попарно равными углами равны), что отрезок может быть определен при помощи угла (например, как сторона равностороннего треугольника с заданным углом, меньше 2/3d ).
В геометрии Евклида для определения отрезка необходимо задать непременно некоторый другой отрезок (или систему отрезков) и указать то геометрическое построение, при помощи которого первый может быть получен из второго (чаще задается единица длины и число, выражающее длину определяемого отрезка). В геометрии Лобачевского дело обстоит проще: для определения отрезка не надо задавать другого отрезка, достаточно указать только геометрическое построение, при помощи которого может быть получен определяемый отрезок (например, как сторона равностороннего треугольника с углом, получаемым из прямого угла при помощи того или иного построения).
Если реальное пространство подчиняется законам геометрии Евклида, эталон длины необходимо должен быть реализован при помощи некоторого твердого тела; если же в реальном пространстве имеет место геометрия Лобачевского, то единица длины может быть задана некоторым геометрическим построением – в этом случае само пространство своими геометрическими свойствами определяет ту или иную единицу длины. Это факт выражают, говоря, что в пространстве Лобачевского существуют «абсолютные единицы длины», т.е. не зависящие от задания тех или иных отрезков.
Таким образом, в геометрии Лобачевского мы имеем более тесную аналогию в вопросах измерения отрезков и углов, чем в евклидовой геометрии (для углов в обеих геометриях существуют абсолютные единицы меры, например прямой угол, получающийся при помощи геометрического построения независимо от задания тех или иных углов).
2.6 Определение параллельной прямой. Функция П(х)
Как мы видели, из постулата Лобачевского непосредственно вытекает, что через луч Р, не лежащую на данной прямой АА1, в плоскости,можно провести бесчисленное множество прямых, не пересекающих АА1. Применяя аксиому Дедекинда, можно показать что существуют две граничные прямые СС1 и DD1, разделяющие класс пересекающих прямых, лежащих в углах CPD и C1PD1, от класса не пересекающих, проходящих внутри углов CPD1 и DPC1. нетрудно видеть, что эти граничные прямые не пересекают прямую АА1 (если бы существовала точка пересечения S прямых АА1 и СС1, то, взяв на прямую АА1 точку Т правее S, мы получили бы прямую РТ, проходящую внутри углов CPD1 и DPC1 и пересекающую АА1 ). Эти граничные прямые СС1 DD1 Лобачевский называет параллельными прямой АА1 в точке Р.
Таким образом, через каждую точку Р плоскости проходят две прямые, параллельные данной: прямая DD1, параллельная АА1 в направлении А1А, и прямая СС1, параллельная той же прямой в противоположном направлении АА1. Обе эти прямые расположены симметрично относительно перпендикуляра PQ, опущенного на АА1. Угол C1PQ Лобачевский называет углом параллельности. Он является функцией длины перпендикуляра PQ, которую Лобачевский обозначает так:
C1PQ=П(PQ).
Можно сказать, что постулат Евклида соответствует предположению, что угол параллельности – прямой. Отметим, что достаточно предположить, что функция П(РQ) постоянна, чтобы отсюда вытекал постулат Евклида.
Необходимо дать себе ясный отчет, насколько понятие параллелизма в неевклидовой геометрии сложнее соответствующего понятия обычной геометрии. В самом деле, по самому определению параллелизма недостаточно сказать, что прямая СС1 параллельна АА1: необходимо при этом не только указать направление параллельности, но и ту точку Р, в которой имеет место факт параллелизма (т.е. в которой прямая СС1 является граничной, отделяющей пересекающие прямые от не пересекающих). Поэтому критерий параллельности выражается боле сложно, чем в евклидовой геометрии. Чтобы доказать, что прямая СС1 в точке Р параллельна АА1 в направлении АА1, необходимо: 1) установить факт не пересечения этих прямых, 2) показать, что СС1 в точке Р является граничной прямой; это последнее устанавливается обычно так («критерий угла»): проводим прямую PR, пересекающую АА1, и рассматриваем угол C1PR, который своим отверстием обращен в сторону параллельности; если каждый луч, имеющий вершину в точке Р и проходящий внутри этого угла, пересекает луч RА1, то прямая СС1 параллельна АА1 в точке Р в направлении АА1.
2.7 Модель Пуанкаре
Роль плоскости Лобачевского играет в модели Пуанкаре открытая полуплоскость; роль прямых выполняют содержащиеся в ней полуокружности с центрами на ограничивающей ее прямой и лучи, перпендикулярные этой прямой. Роль наложений выполняют композиции инверсий относительно этих полуокружностей и отражений лучах. Все аксиомы евклидовой геометрии здесь выполняются, кроме аксиомы параллельных, тем самым в этой модели выполняется геометрия Лобачевского.
Практическая часть
1. Сумма углов треугольника
Исследуем прежде всего связь постулатов Евклида и Лобачевского с вопросом о сумме углов треугольника. Покажем, что постулат Евклида равносилен предположению, что сумма углов треугольника равна двум прямым, а постулат Лобачевского - что сумма меньше двух прямых.
Прежде всего исключим предположение, что сумма углов треугольника может быть больше двух прямых.
Задача 1. Доказать, что сумма углов треугольника не может быть больше двух прямых.
Доказательство – от противного: предположим, что сумма углов треугольника АВС равна 2d. Пусть ВАС - наименьший угол этого треугольника (в частном случае, если АВС – равносторонний треугольник или равнобедренный треугольник, основание которого больше боковой стороны, то один из его равных углов). Проводим медиану AD противоположной стороны и откладываем отрезок DB1, равный этой медиане. из равенства треугольников ABD и B1DC выводим, что DB1C= DAB, DCB1= DBA. Таким образом, в треугольнике АВ1С (назовем его первым выводным треугольником) сумма трех углов равна также 2d, сумма двух углов с вершинами в конечных точках удвоенной медианы исходного треугольника равна, а наименьший угол. Из первого выводного треугольника получаем аналогичным построением второй выводной: берем наименьший угол, проводим медиану противолежащей стороны и т.д. В полученном таким образом втором выводном треугольнике сумма трех углов равна 2d, сумма двух углов с вершинами в конечных точках удвоенной медианы первого выводного треугольника, а наименьший угол. Продолжая этот процесс далее, получим ряд выводных треугольников; в n-м треугольнике сумма углов равна 2d, а сумма углов с вершинами в концах удвоенной медианы (n-1)-го выводного треугольника. Если взять n достаточно большим, то можно сделать меньше, т.е. третий угол этого треугольника будет больше 2d; мы получаем противоречие.