Смекни!
smekni.com

Геометрия Лобачевского (стр. 4 из 5)

Задача 2. Доказать, что если в каком-нибудь треугольнике сумма углов равна 2d, то это имеет место и во всяком другом треугольнике

Доказательство. Обозначим сумму углов треугольника АВС через SАВС. Пусть в треугольнике АВС сумма углов равна 2d; тогда два угла, например А и С, острые, и нетрудно показать, что высота ВD, опущенная из вершины В, пройдет внутри этого треугольника, т.е. разобьет его на два прямоугольных треугольника. Учитывая, что

SABC=SABD+SDBC-2d, (1)

и принимая во внимание предыдущую теорему, выводим, что SABC=SABD=2d.

Покажем теперь, что в каждом прямоугольном треугольнике сумма углов равна 2d. Для этого возьмем треугольник ABD и дополним его до прямоугольника, пристроив к нему равный ему треугольник AEB с прямым углом в вершине Е и катетами АЕ=BD и EB=AD. В этом прямоугольнике AEBD сумма углов равна 4d. Откладывая сторону ADn раз прямой AY и прикладывая затем один к другому прямоугольники, равные AEBD, построим прямоугольник ALMK, составленный из n2 прямоугольников, равных AEBD. В прямоугольнике ALMK сумма углов равна 4d. Диагональ AM разбивает этот прямоугольник на два прямоугольных треугольника, в каждом из которых сумма углов равна 2d (на основании теоремы 1). Принимая n достаточно большим, получим прямоугольный треугольник AMK, у которого катеты будут больше некоторого заданного прямоугольного треугольника PQR. Откладывая отрезки QT=KM, QS=AK, получим прямоугольный треугольник STQ, равный прямоугольному треугольнику AMK и вмещающий в себе заданный прямоугольный треугольник PQR. Отрезок PT разбивает STQ на два треугольника, и так как SSQT=SSPT+SPTQ-2d, то SSPT+SPTQ=4d, откуда (на основании той же теоремы)

SSPT=SPTQ=2d.

Применяя то же рассуждение к треугольнику PTQ и отрезку RP, устанавливаем, что SPQR=2d.

Итак, в каждом прямоугольном треугольнике сумма углов равна 2d. Но мы видели выше, что каждый треугольник может быть разбит на два прямоугольных. Учитывая соотношение (1), получаем, что в любом треугольнике сумма углов равна 2d.

Итак, возможны только два предположения: или во всех треугольниках сумма углов равна 2d, или же во всех меньше 2d.

Теперь мы установим связь вопроса о сумме углов треугольника с постулатом параллельности.

Задача 3. Доказать, что если сумма углов треугольника равна 2d, то имеет место постулат Евклида, если же она меньше 2d, то справедлив постулат Лобачевского.

Имеет место и обратное предложение.

Доказательство. Прежде всего покажем, что если сумма углов треугольника равна 2d, то через точку Р, не лежащую на прямой АА1, можно провести прямую, образующую с прямой ВВ1(АА1 и ВВ1 перпендикулярны к PQ) сколь угодно малый угол и пересекающую АА1.

Для этого построим отрезок QQ1=PQ; тогда угол B1PQ1=d/2. Откладываем отрезок Q1Q2=PQ1; B1PQ=d/22. затем продолжаем этот процесс: смотрим отрезки Q2Q3=PQ2, Q3Q4=PQ3,......,Qn-1Qn=PQn-1. Получаем лучи PQ3, PQ4,......, PQn, образующие с лучом РВ1 углы d/23, d/24,......, d/2n. При увеличении n мы можем, таким образом, получить угол, меньше любого заданного.

Теперь уже просто доказать постулат Евклида. Пусть некоторый луч PR образует с PB1 угол. Выбирая n достаточно большими ( так, чтобы (d/2n)<), мы получим треугольник PQQn, причем луч РR проходит внутри угла QPQn, т.е. пересекает сторону QQn.

Рассмотрим теперь предположение, что сумма углов треугольника меньше 2d. Покажем, что имеются прямые, отличные от ВВ1, проходящие через точку Р и не пересекающие АА1.

Соединим некоторую точку М, лежащую на АА1, с Р и проведем луч PR так, чтобы МРR был равен РМQ. Из предположения о сумме углов треугольника вытекает, что МРВ1>РМQ, т.е. луч РR пройдет внутри угла МРВ1; этот луч не пересекает АА1, так как в противном случае получился треугольник, у которого внешний угол QMP равен внутреннему (МРR), с ним не смежному.

Таким образом, первая половина теоремы доказана, а из нее непосредственно вытекает обратное предложение.

2. Вопрос о существовании подобных фигур

Перейдем к вопросу о связи постулатов параллельности с вопросом о существовании подобных фигур. Докажем, что существование подобных фигур возможно только в том случае, если справедлив постулат Евклида. Для этого докажем следующую теорему.

Задача 4. Доказать, что если существуют два подобных треугольника, то справедлив постулат Евклида.

Доказательство. Пусть у треугольника АВС и А1В1С1 углы попарно равны:

А=А1, В=В1, С=С1, но сторона АВ>А1В1. На стороне АВ отложим отрезок АВ=АВ и проведем прямую АМ под углом ВАМ=А. Так как АМ не может пересекать прямую АС, то она пересечет отрезок ВС в некоторой точке С. Так как АВС=АВС, то в четырехугольнике ААСС сумма углов равна 4d. Разделяя его диагональю на два треугольника, получим, что в каждом из них сумма углов равна 2d т.е. справедлив постулат Евклида.

3. Основное свойство параллелизма

Лобачевский доказывает, что прямая, параллельная данной прямой в некоторой своей точке, параллельна ей во всех своих точках.

Задача 5. Доказать, что прямая сохраняет признак параллельности во всех своих точках.

Доказательство. Пусть прямая ВВ параллельна в точке Р прямой АА. Рассмотрим точку Q, лежащую от точки Р в сторону параллельности, т.е. по ту же сторону от прямой PR, соединяющей Р с некоторой точкой R на АА, что луч RA. Возьмем какой-нибудь луч QQ, проходящий внутри угла BQR, обращенного своим отверстием в сторону параллельности, и докажем, что он пересекает луч RA. Для этого соединим какую-нибудь его точку QcP; луч PQпересечет RAв некоторой точке S ( так как прямая ВВ параллельна прямой АА в точке Р). Луч QQ, пересекающий сторону PS треугольника RPS, не может пересечь отрезка PR (так как тогда он проходил бы внутри смежного угла PQR) и не проходит ни через одну из вершин этого треугольника. Поэтому он должен пересечь отрезок PS. Таким образом, теорема доказана для того случая, когда точка Q расположена от точки Р в сторону параллельности.

Рассмотрим теперь тот случай, когда Qлежит в обратном направлении от точки Р. Соединим луч QQ, проходящий внутри угла BQR. Этот луч пересечет отрезок РR в некоторой точке S. Продолжая луч QQ по другую сторону точки Q, берем на этом продолжении точку Т. Прямая ТР проходит внутри угла RPB, т.е. пересекает RА в точке U. Итак, луч QQпересекает сторону RP треугольника RPU, не пересекает отрезок PU и не проходит ни через одну из его вершин, т.е. пересекает отрезок RU. Таким образом, признак параллельности имеется в точке Q.

После того как доказана эта теорема, мы можем внести упрощение в терминологию теории параллельности: при указании. что прямая ВВ параллельна АА, не надо задавать той точки прямой ВВ, в которой имеется факт параллелизма.

4. Свойства функции П(х)

Задача 6. Доказать, что для каждого острого угла существует прямая, перпендикулярная к одной его стороне и параллельна другой.

Доказательство. Рассмотрим перпендикуляры, поставленные к стороне OQ острого угла POQ; среди них, конечно, найдутся такие, которые пересекают сторону ОР ( достаточно опустить из какой-нибудь точки луча ОР перпендикуляр на OQ). Покажем, что существует бесчисленное множество перпендикуляров, не пересекающих ОР.

Докажем это от противного, предполагая, что все перпендикуляры к стороне OQ пересекают ОР. Рассмотрим на луче OQ ряд точек А, А, А,…, Аn такой, что

АА =ОА, А А =ОА, А А =ОА, …, Аn-1An=OAn-1. Перпендикуляры, поставленные в точках А, А, …, Аn к стороне OQ, согласно предположению, пересекут луч ОР в точках В,В,В, …,Вn. Обозначая дефект треугольника ОАВ через D, имеем

DOAB=DOBA+DBAB=2DOAB+DBAB>2D,

DOA B =DOB A +DB A B =2DOA B +DB A B >22D,

.....................................................................,

DOanBn=DOBn-1An+DBn-1AnBn=2DOAn-1Bn-1+DBn-1AnBn >2nD.

Таким образом, увеличивая n, мы можем получить треугольник ОАnВn, у которого дефект превышает любое число, а это невозможно, так как дефект любого треугольника <2d.

Среди перпендикуляров к стороне OQ существуют не пересекающие сторону ОР. Рассмотрим один из них – MN. Если он параллелен ОР, теорема доказана. В противном случае разбиваем точки отрезка ОМ на два класса: к первому классу отнесем те точки, в которых перпендикуляры пересекают ОР, ко второму – те, в которых перпендикуляры не пересекают ОР. Ясно, что левее каждой точки первого класса лежат только точки первого же класса, т.е. классы лежат раздельно: второй класс лежит правее первого; таким образом, это – классы Дедекинда. Применяя аксиому Дедекинда, получаем точку D, разделяющие эти классы.

Покажем,что перпендикуляр DE к OQ параллелен ОР. Прежде всего этот перпендикуляр не может пересечь ОР, так как, если бы он пересекал ОР в точке F, то, опуская из точки G, лежащей на ОР правее F, перпендикуляр GJна OQ, мы получили бы точку J первого класса, лежащую правее точки D. Остается показать, что любой луч DK, проходящий внутри угла ODE, пересекает ОР. Опуская из какой-нибудь точки К этого луча DK на OQ перпендикуляр KL, получим точку L первого класса, т.е. KL пересекает ОР в некоторой точке R. Прямая DK, пересекающая сторону LR треугольника ORL, должна пересечь отрезок OR.

Таким образом, перпендикуляр DE действительно параллелен ОР.

Задача 7. Доказать, что угол параллельности П(р) является убывающей функцией длины р перпендикуляра, принимающей все значения между 0 и d.

Доказательство. Пусть РР параллельна QQ, т.е. =П(РQ). Покажем, что эта функция убывающая.

В самом деле уменьшая ее аргумент, рассмотрим отрезок PR<PQ. Перпендикуляр RR к PQ пересекает РР, так как, проводя прямую QS, параллельную RR,мы получим треугольник PQT, одну из сторон которого пересекает RR, а так как RR параллельна QS она пересечет сторону РТ этого треугольника. Таким образом, П(PR)>П(PQ).