n=1000; p=0,004;
Если число nдостаточно большое, а вероятность
Не стремится к 0, то для вычисления вероятность используются предельные формулы Муавра – Лапласа.
Интегральная теорема Муавра – Лапласа
Если вероятность Р наступления события А при независимых испытаниях постоянна и отлична от 0 и 1, то вероятность того, что при n независимых испытаниях событии А появится не менее k1 и не более k2 раз может быть найдена по приближенной формуле:
ф – функция Лапласа, значения в таблице
ф(-х)=-ф(х)
Задача.
Вероятность выпуска нестандартной лампы 0,1. Чему равна вероятность того, что в партии из 2000 ламп число стандартных не менее 1790?
p=0,9; n=2000; k1=1790; k2=2000
Среднее квадратическое отклонение дискретной случайной величины
Эта характеристика также как и дисперсия определяет рассеяние случайной величины Х вокруг ее математического ожидания. Дисперсия имеет размерность несовпадающую со значением случайной величины Х, а среднее квадратическое отклонение имеет размерность, совпадающую со значением случайной величины.
Теорема. Среднее квадратическое отклонение суммы конечного числа взаимно независимых случайных величин = корню квадратному из суммы квадратов средних квадратических отклонений этих величин.
Доказательство:
Дифференциальная функция распределения случайной величины. Свойства - плотность распределения вероятностей. Дифференциальная функция распределения существует только у непрерывной случайной величины.0 при
F(X) = k*X при
1 при
0 при
f(X) = k при
1 при
Ff(X)Чтобы найти вероятность попадания случайной величины в интервал (a; b) с помощью дифференциальной функции используют функцию
Чтобы найти интегральную функцию распределения случайной величины используют:
Свойства.
1)
2)
комбинаторика случайная величина вероятность математический
Математическое ожидание дискретной случайной величины. Свойства.
Математическое ожидание (среднее значение ДСВ) – постоянное число, равное сумме произведений значений случайных величин на их соответствующие вероятности.
Таблица
Х | 2 | 3 | 5 |
Р | 0,3 | 0,4 | 0,3 |
М(Х)=2*0,3+3*0,4+5*0,3=3,3
Свойства.
1) М(С)=С
2) М(СХ)=С*М(Х)
Х | х1 | х2 | … | х3 |
Р | Р1 | Р2 | … | Р3 |
С*Х | С*х1 | С*х2 | … | С*х3 |
Р | Р1 | Р2 | … | Р3 |
4) М(Х-У)=М(Х)-М(У) независимые
5) М(Х*У)=М(Х)*М(У) случ. Величины
Пример. Найти математическое ожидание М(Х+У) двумя способами.
1. Х+У; М(Х+У)
2. М(Х)+М(У)
6) М(Х-М(Х))=0
(Х-М(Х)) – отклонение случайной величины от ее математического
Действия над дискретными случайными величинами
ДСВ можно 1) умножать на число,
2) возводить в степень.
1) умножение на число
2) возведение в степень
Две ДСВ называются независимыми, если событие Аi, состоящее в том, что случайная величина Х примет значения
, исобытие
будут независимыми. В противном случае ДСВ называются зависимыми.Несколько ДСВ называются взаимно независимыми, если закон распределения одной из них не зависит от того, какие ранее возможные значения приняли остальные величины.
Пример.
Если в верхней строке таблицы появляются одинаковые значения, то соответствующие столбцы объединяем и их вероятности складываем.
Действие вычитания и умножения выполняются аналогично.
Случайные величины
Дискретные случайные величины.
1) Случайной величиной называют величину, которая в результате испытания примет одно и только одно значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены. Случайные величины могут быть:
дискретные (прерывные), которые принимают лишь изолированные значения с определенными вероятностями. Их число может быть конечным и бесконечным (счетное). Пример: среди 100 новорож-денных число родившихся мальчиков от 1 до 10.
Непрерывные, которые могут принимать все значения из некоторого конечного промежутка. Пример: множество чисел принадлежащих промежутку
Дискретные случайные величины. Обозначаются заглавными буквами латинского алфавита X, Y,…, а их возможные значения х1, х2,…, хn.
Закон распределения ДСВ – Это соответствие между возможными значениями и их вероятностями. Его можно задать аналитически, таблично и графически, чаще всего задают таблицей:
Задача. В денежно-вещевой лотерее выпущено 110 билетов. Разыгрывается приз 50000 рублей и 10 призов по 1000 рублей. Найти закон распределения случайной величины Х – стоимость выигрыша для владельца одного билета.
Х | 500000 | 1000 | 0 |
Р | 1/110 | 10/110 | 99/110 |
Дисперсия (рассеянное значение случайной величины вокруг математического ожидания этой величины)
Дисперсия – математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.
1)
2)
Пример.
Х | 1 | 2 | 5 |
Р | 0,3 | 0,5 | 0,2 |
М(Х)=1*0,3+2*0,5+5*0,2+5*0,2=2,3