Смекни!
smekni.com

Теория вероятностей и математическая статистика (стр. 4 из 4)

n=1000; p=0,004;

Если число nдостаточно большое, а вероятность

Не стремится к 0, то для вычисления вероятность используются предельные формулы Муавра – Лапласа.

Интегральная теорема Муавра – Лапласа

Если вероятность Р наступления события А при независимых испытаниях постоянна и отлична от 0 и 1, то вероятность того, что при n независимых испытаниях событии А появится не менее k1 и не более k2 раз может быть найдена по приближенной формуле:


ф – функция Лапласа, значения в таблице

ф(-х)=-ф(х)

Задача.

Вероятность выпуска нестандартной лампы 0,1. Чему равна вероятность того, что в партии из 2000 ламп число стандартных не менее 1790?

p=0,9; n=2000; k1=1790; k2=2000

Среднее квадратическое отклонение дискретной случайной величины

Эта характеристика также как и дисперсия определяет рассеяние случайной величины Х вокруг ее математического ожидания. Дисперсия имеет размерность несовпадающую со значением случайной величины Х, а среднее квадратическое отклонение имеет размерность, совпадающую со значением случайной величины.

Теорема. Среднее квадратическое отклонение суммы конечного числа взаимно независимых случайных величин = корню квадратному из суммы квадратов средних квадратических отклонений этих величин.

Доказательство:

Дифференциальная функция распределения случайной величины. Свойства

- плотность распределения вероятностей. Дифференциальная функция распределения существует только у непрерывной случайной величины.

0 при

F(X) = k*X при

1 при


0 при

f(X) = k при

1 при

Ff(X)

Чтобы найти вероятность попадания случайной величины в интервал (a; b) с помощью дифференциальной функции используют функцию

Чтобы найти интегральную функцию распределения случайной величины используют:

Свойства.

1)

2)

комбинаторика случайная величина вероятность математический

Математическое ожидание дискретной случайной величины. Свойства.

Математическое ожидание (среднее значение ДСВ) – постоянное число, равное сумме произведений значений случайных величин на их соответствующие вероятности.

Таблица

Х 2 3 5
Р 0,3 0,4 0,3

М(Х)=2*0,3+3*0,4+5*0,3=3,3

Свойства.

1) М(С)=С

2) М(СХ)=С*М(Х)

Х х1 х2 х3
Р Р1 Р2 Р3

С*Х С*х1 С*х2 С*х3
Р Р1 Р2 Р3

3) М(Х+У)=М(Х)+М(У) если Х и У -

4) М(Х-У)=М(Х)-М(У) независимые

5) М(Х*У)=М(Х)*М(У) случ. Величины

Пример. Найти математическое ожидание М(Х+У) двумя способами.

1. Х+У; М(Х+У)

2. М(Х)+М(У)

6) М(Х-М(Х))=0

(Х-М(Х)) – отклонение случайной величины от ее математического

Действия над дискретными случайными величинами

ДСВ можно 1) умножать на число,

2) возводить в степень.

1) умножение на число

2) возведение в степень

Две ДСВ называются независимыми, если событие Аi, состоящее в том, что случайная величина Х примет значения

,
и

событие

будут независимыми. В противном случае ДСВ называются зависимыми.

Несколько ДСВ называются взаимно независимыми, если закон распределения одной из них не зависит от того, какие ранее возможные значения приняли остальные величины.

Пример.

Если в верхней строке таблицы появляются одинаковые значения, то соответствующие столбцы объединяем и их вероятности складываем.

Действие вычитания и умножения выполняются аналогично.

Случайные величины

Дискретные случайные величины.

1) Случайной величиной называют величину, которая в результате испытания примет одно и только одно значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены. Случайные величины могут быть:

дискретные (прерывные), которые принимают лишь изолированные значения с определенными вероятностями. Их число может быть конечным и бесконечным (счетное). Пример: среди 100 новорож-денных число родившихся мальчиков от 1 до 10.

Непрерывные, которые могут принимать все значения из некоторого конечного промежутка. Пример: множество чисел принадлежащих промежутку

Дискретные случайные величины. Обозначаются заглавными буквами латинского алфавита X, Y,…, а их возможные значения х1, х2,…, хn.

Закон распределения ДСВ – Это соответствие между возможными значениями и их вероятностями. Его можно задать аналитически, таблично и графически, чаще всего задают таблицей:

Задача. В денежно-вещевой лотерее выпущено 110 билетов. Разыгрывается приз 50000 рублей и 10 призов по 1000 рублей. Найти закон распределения случайной величины Х – стоимость выигрыша для владельца одного билета.

Х 500000 1000 0
Р 1/110 10/110 99/110

Дисперсия (рассеянное значение случайной величины вокруг математического ожидания этой величины)

Дисперсия – математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

1)

2)

Пример.

Х 1 2 5
Р 0,3 0,5 0,2

М(Х)=1*0,3+2*0,5+5*0,2+5*0,2=2,3