ТЕОРІЯ І ПРАКТИКА ОБЧИСЛЕННЯ ВИЗНАЧНИКІВ
1. Основні поняття і теореми
Def. Нехай задано квадратну матрицю А n-го порядку з елементами aij, де i визначає номер рядка, j – номер стовпця і при цьому через хj позначені стовпці матриці А, тобто
і .Визначником(det A)квадратної матриці А зі стовпцями хj називається функціонал j(х1, х2, … , хn) щодо стовпців цієї матриці, який:
а) лінійний за кожним з аргументів (полілінійний):
теорема обчислення визначник сума
j(х1, …, aхi1 + bхi2, … , хn) = aj(х1, … , хi1, … , хn) + bj(х1, … , хi2, … , хn);
б) абсолютно антисиметричний (антисиметричний по будь-якій парі аргументів): j(х1, … , хi, … , хj, … , хn) = –j(х1, … , хj, … , хi, … , хn);
в) підкоряється умові нормування:
.Тоді, з огляду на загальний вигляд полілінійного антисиметричного функціонала, маємо:
а б
Рис. 1
, (1)де N(j1 j2 … jn) – кількість безладів у перестановці
.Говорять, що в перестановці мається безлад, якщо jk > jm і k < m.
З формули (1) для визначника другого порядку одержуємо
.Визначниктретього порядку дорівнює сумі шести (3! = 6) доданків. Для побудови цих доданків зручно скористатися правилом трикутників.Добуток елементів, що розташовані на головній діагоналі, а також добутки елементів, що є вершинами двох трикутників на рис. 1а, беруться з множником +1, а добуток елементів, що розташовані на побічній діагоналі, а також добутки елементів, що є вершинами двох трикутників на мал. 1б, беруться з множником –1, тобто
Властивості визначників:
1°. det A = det AT. З цієї властивості випливає, що рядки і стовпці визначника рівноправні. У силу цього всі властивості, сформульовані для стовпців, можуть бути сформульовані і для рядків визначника.
2°. Якщо один зі стовпців визначника складається з нульових елементів, то визначник дорівнює нулю.
3°. Загальний множник у стовпці визначника можна виносити за знак визначника.
4°. Якщо у визначнику поміняти два стовпці місцями, то визначник змінить знак.
5°. Визначник, що має два рівних стовпці, дорівнює нулю.
6°. Якщо стовпці визначника лінійно залежні, то визначник дорівнює нулю.
7°.
.8°. Визначник не зміниться, якщо до стовпця визначника додати лінійну комбінацію інших стовпців.
9°. Визначник добутку двох квадратних матриць n-го порядку дорівнює добуткові визначників цих матриць.
Def. Якщо в матриці А порядку n викреслити i-й рядок та j-й стовпець, то елементи, що залишилися, утворять матрицю (n – 1)-го порядку. Її визначник називається мінором (n – 1)-го порядку, додатковим до елемента aij матриці А, і позначається Мij, а величина Аij = (–1) i + j Мij називається алгебраїчним доповненням до елемента aij матриці А.
10°.
(Розкриття визначника за елементами j-го стовпця та за елементами i-го рядка).11°.
12°. (Теорема Лапласа).
.Тут
– мінор, складений з елементів матриці А, що розташовані на перетині рядків i1, i2, …, ik і стовпців j1, j2, …, jk, а – алгебраїчне доповнення до цього мінора.13°. (Про зміну елементів визначника).
Якщо
, а , то .3. Приклади розв’язування задач
Задача 1. Обчислити визначник:
.Розв’язання. I спосіб. Обчислимо визначник розкладанням за елементами (наприклад) третього рядка (властивість 10º):
.Визначники третього порядку, що входять до останнього виразу, обчислені за правилом трикутників.
II спосіб. Обчислимо визначник розкладанням за мінорами 2-го порядку (наприклад тими, що розташовані в 1-муі 2-мурядках вихідного визначника, властивість 12º). Усього таких мінорів буде шість (1-й, 2-й стовпці; 1-й, 3-й стовпці; 1-й, 4-й стовпці; 2-й, 3-й стовпці; 2-й, 4-й стовпці; 3-й, 4-й стовпці). Одержимо:
.III спосіб. Обчислимо визначник методом приведення визначника до трикутного вигляду. Для цього скористаємося властивістю 8°.
а) 1-й рядок додамо до 3-го рядка;
б) 1-й рядок, помножений на (–2), додамо до 4-горядка.
При цьому визначник не зміниться.
Далі: в) від 1-го рядка віднімемо 2-й рядок;
г) 2-й рядок, помножений на 3, додамо до 4-го рядка, помноженого на 2. При цьому визначник збільшиться вдвічі за рахунок множення 4-го рядка на 2.
;д) в останньому визначнику 3-ій рядок помножимо на 2 і додамо до 4-го рядка. Визначник не зміниться. Одержимо:
.Визначник матриці трикутного вигляду обчислюється як добуток діагональних елементів. Доходимо висновку, що вихідний визначник дорівнює –3.
Задача 2. Обчислити визначник:
.Рішення. Для обчислення визначника скористаємося методом виділення лінійних множників. Насамперед відзначимо, що вихідний визначник є багаточленом 4-го степеня відносно х. Крім того, при х = 2 перший і другий рядки співпадають, тобто визначник дорівнює нулеві. Отже, х = 2 є коренем багаточлена. Далі зауважуємо, що при х = 6, х = 12, х = 20 перший рядок співпадає з третім, четвертим і п’ятим рядком відповідно. Виходить, ми встановили всі чотири корені полінома, тобто
det А= C(x – 2)(x – 6)(x – 12)(x – 20).
Для знаходження C відзначимо, що у визначник множник х4 входить з коефіцієнтом, який дорівнює 1/24, а в багаточлен, що стоїть в правій частині, – з коефіцієнтом який дорівнює 1. Тоді C = 1/24. У такий спосіб:
det А =
(x – 2)(x – 6)(x – 12)(x – 20).Задача 3. Обчислити визначник:
.Рішення. Зрозуміло, що вихідний визначник можна одержати, якщо до всіх елементів визначника
додати х = 4. Тоді скористаємося методом зміни елементів визначника (властивість 13°). Одержуємо: .Визначник діагонального вигляду дорівнює добуткові діагональних елементів (5! = 120). Алгебраїчні доповнення дорівнюють: А11 = 5! = 120;
А22 = 3.4.5 = 60; А33 = 2.4.5 = 40; А44 = 2.3.5 = 30 і А55 = 2.3.4 = 24.
Решта Аij = 0. Одержуємо: det А = 120 + 4(120 + 60 + 40 + 30 + 24) = 120 + 4.274 = 1216.
Задача 4. Обчислити визначник n-го порядку
.Рішення. Розкриємо визначник за елементами 1-го рядка:
,а останній визначник розкриємо за елементами 1-го стовпця. Одержуємо:
Dn = 5Dn – 1 – 4Dn – 2. (*)
Записане співвідношення називається рекурентним співвідношенням і дозволяє виразити Dn через такі ж визначники більш низького порядку.
З (*) одержуємо:
1) Dn – Dn – 1 = 4(Dn – 1 – Dn – 2) = 42(Dn – 2 – Dn – 3) = … = 4n – 2 (D2 – D1) =
= 4n – 2 (21 – 5) = 4n .
2) Dn – 4Dn – 1 = Dn– 1 – 4Dn – 2 = Dn– 2 – 4Dn – 3 = … = D2 – 4D1 = 21 – 4.5 = 1.
3)
Маємо систему рівнянь:
. Віднімаючи з 1-го рівняння 2-е, одержуємо: 3Dn – 1 = 4n – 1. У такий спосіб: .4. Задачі і вправи для самостійного розв’язування
1. Визначити число безладів у перестановках (за вихідне розташування завжди, якщо немає особливих вказівок, приймається розташування 1, 2, 3, ... у зростаючому порядку):