k2 – квадратичный коэффициент пропорциональности. K2 = α = С2ρS. В данном случае достоверно можно узнать лишь плотность воздуха, а площадь манекена S и коэффициент лобового сопротивления С2 для него определить сложно, можно воспользоваться полученными экспериментальными данными и принять K2 = α = 0,2.
Тогда получим закон Ньютона в дифференциальном виде:
Так как
Тогда можно составить систему дифференциальных уравнений:
Математическая модель при падении тела в гравитационном поле с учетом сопротивления воздуха выражается системой из двух дифференциальных уравнений первого порядка.
Для имитационного моделирования движения парашютиста в системе MATLAB используем элементы пакета расширения Simulink. Для задания величин начальной высоты - H_n, конечной высоты - H_ k, числа - pi, μ – динамическая вязкость среды - my, обхват - R, массе манекена m, коэффициент лобового сопротивления - c, плотность воздуха - ro, площадь сечения тела - S, ускорение свободного падения - g, начальная скорость - V_n используем элемент Constantнаходящийся в Simulink/Sources(рисунок 3).
Рисунок 3. Элемент Constant
Для операции умножения используем блок Product, находящийся в Simulink/MathOperations/Product (рисунок 4).
Рисунок. 4
Для ввода k1 – линейного коэффициента пропорциональности и k2 – квадратичного коэффициента пропорциональности используем элемент Gain, находящийся в Simulink/MathOperations/Gain(Рисунок. 5.)
Рисунок. 5
Для интегрирования – элемент Integrator. Находящийсяв Simulink/Continuous/Integrator. Рисунок. 6.
Рисунок. 6
Для вывода информации используем элементы Display и Scope. Находящиеся в Simulink/Sinks. (Рисунок. 7)
Рисунок. 7
Математическая модель для исследования с использованием вышеперечисленных элементов, описывающая последовательный колебательный контур приведена на рисунке 8.
Рисунок. 8
Программа исследований
1. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 50кг.
Рисунок 9
Из графиков видно, что при расчете падения парашютиста массой 50 кг, следующие данные: максимальная скорость равна 41,6 м/с и время равно 18с , и должна достигаться через 800 м падения, т.е. в нашем случае на высоте около 4200 м.
Рисунок. 10
2. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 100кг.
Рисунок 11
Рисунок 12
С массой парашютиста 100 кг.: максимальная скорость равна 58 м/с и время равно 15с , и должна достигаться через 500 м падения, т.е. в нашем случае на высоте около 4500 м. (рисунок. 11., рисунок. 12).
Выводы по полученным данным, которые справедливы для манекенов, отличающихся только массой, но с одинаковыми размерами, формой, типом поверхности и другими параметрами, определяющими внешний вид объекта.
Легкий манекен при свободном падении в гравитационном поле с учетом сопротивления среды достигает меньшей предельной скорости, но за меньший промежуток времени и, естественно, при одинаковой начальной высоте – в более низкой точке траектории, чем тяжелый манекен.
Чем тяжелее манекен, тем быстрее он достигнет земли.
%Функция моделирования движения парашютиста
function dhdt=parashut(t,h)
global k1 k2 g m
% система ДУ первого порядка
dhdt(1,1)= -h(2);
dhdt(2,1)=(m*g-k1*h(2)-k2*h(2)*h(2))/m
М-файл вывода результатов parashutist.m:
% Моделирование движения парашютиста
% Васильцов С. В.
clc
global h0 g m k1 k2 a
% k1-линейный коэффициент пропорциональности, определяющийся свойствами среды и формой тела. Формула Стокса.
k1=6*0.0182*0.4;
%k2-квадратичный коэффициент пропорциональности, пропорционален площади сечения тела, поперечного по
%отношения к потоку, плотности среды и зависит от формы тела.
k2=0.5*1.2*0.4*1.225
g=9.81; % ускорение свободного падения
m=50; % масса манекена
h0=5000; % высота
[t h]= ode45(@parashut,[0 200],[h0 0] )
r=find(h(:,1)>=0);
s=length(r);
b=length(t);
h(s+1:b,:)=[];
t(s+1:b,:)=[];
a=g-(k1*-h(:,2)+k2*h(:,2).*h(:,2))/m % вычисляемускорение
% Построение графика зависимости высоты от времени
subplot(3,1,1), plot(t,h(:,1),'LineWidth',1,'Color','r'),grid on;
xlabel('t, c'); ylabel('h(t), m');
title('Графикзависимостивысотыотвремени', 'FontName', 'Arial','Color','r','FontWeight','bold');
legend('m=50 kg')
% Построение графика зависимости скорости от времени
subplot(3,1,2), plot(t,h(:,2),'LineWidth',1,'Color','b'),grid on;
xlabel('t, c');
ylabel('V(t), m/c');
Title('Графикзависимостискоростиотвремени', 'FontName', 'Arial','Color','b','FontWeight','bold');
legend('m=50 kg')
% Построение графика зависимости ускорения от времени
subplot(3,1,3), plot(t,a,'-','LineWidth',1,'Color','g'),grid on;
text (145, 0,'t, c');
ylabel('a(t), m/c^2');
Title('Графикзависимостиускоренияотвремени', 'FontName', 'Arial','Color','g','FontWeight','bold');
legend('m=50 kg')
Экранная форма вывода графиков.
Список использованных источников
1. Вся физика. Е.Н. Изергина. – М.: ООО «Издательство «Олимп», 2001. – 496 с.
2. Касаткин И. Л. Репетитор по физике. Механика. Молекулярная физика. Термодинамика/ Под ред. Т. В. Шкиль. – Ростов Н/Д: изд-во «Феникс», 2000. – 896 с.
3. Компакт-диск «Самоучитель MathLAB». ООО «Мультисофт», Россия, 2005.
4. Методические указания к Курсовой работе: дисциплина Математическое моделирование. Движение тела при учете сопротивления среды. – Минск. РИИТ БНТУ. Кафедра ИТ, 2007. – 4 с.
5. Решение систем дифференциальных уравнений в Matlab. Дубанов А.А. [Электронный ресурс]. – Режим доступа: http://rrc.dgu.ru/res/exponenta/ educat/systemat/dubanov/index.asp.htm;
6. Энциклопедия д.д. Физика. Т. 16. Ч.1. с. 394 – 396. Сопротивление движению и силы трения. А. Гордеев. /Глав. ред. В.А. Володин. – М. Аванта+, 2000. – 448 с.
7. MatlabFunctionReference [Электронный ресурс]. – Режим доступа: http://matlab.nsu.ru/Library/Books/Math/MATLAB/help/techdoc/ref/.