Смекни!
smekni.com

Моделирование движения парашютиста (стр. 1 из 3)

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Курсовая работа

Дисциплина «Математическое моделирование»

Тема: «Моделирование движения парашютиста»

Минск 2008


Содержание

Введение

1. Свободное падение тела с учетом сопротивления среды

2. Формулировка математической модели и ее описание.

3. Описание программы исследования с помощью пакета Simulink

4. Решение задачи программным путем

Список использованных источников


Введение

Формулировка проблемы:

Катапульта выбрасывает манекен человека с высоты 5000 метров. Парашют не раскрывается, манекен падает на землю. Оценить скорость падения в момент удара о землю. Оценить время достижения манекеном предельной скорости. Оценить высоту, на которой скорость достигла предельного значения. Построить соответствующие графики, провести анализ и сделать выводы.

Цель работы:

Научиться составлять математическую модель, решать дифференциальные уравнения программными средствами (используется язык технических вычислений MatLAB 7.0, пакет расширения Simulink) и анализировать полученные данные о математической модели.

1. Свободное падение тела с учетом сопротивления среды

При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту, относительно несложную, задачу нельзя решить средствами “школьной” физики: таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления.

Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным). При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение,

где
определяется свойствами среды и формой тела. Например, для шарика
— это формула Стокса, где
— динамическая вязкость среды, r — радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм
= 0,0182 H.c.м-2 для воды 1,002 H.c.м-2 , для глицерина 1480 H.c.м-2.

Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (в движение станет равномерным).

Имеем

или

(1)

Пусть r= 0,1 м,

= 0,8 кг/м (дерево). При падении в воздухе
м/с, в воде
17 м/с, в глицерине
0,012 м/с.

На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости:

. Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если
, то вкладом
можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды
и зависит от формы тела. Обычно представляют k2 = 0,5сS
, где с — коэффициент лобового сопротивления — безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис.1.

При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается. Для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе.

Вернемся к указанной выше оценке, исходя из квадратичной зависимости силы сопротивления от скорости.

Имеем

или

(2)

для шарика

(3)

ДискПолусфераПолусфераШарКаплевидное телоКаплевидное тело с = 1,11с = 1,33с = 0,55с = 0,4с = 0,045с = 0,01

Рис1. Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму

Примем r = 0,1 м,

=0,8.103 кг/м3 (дерево). Тогда для движения в воздухе (
= 1,29 кг/м3 ) получаем
18 м/с, в воде(
= 1.103 кг/м3 )
0,65 м/с, в глицерине (
= 1,26.103 кг/м3 )
0,58 м/с.

Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения — уравнение второго закона Ньютона с учетом двух сил, действующих на тело: силы тяжести и силы сопротивления среды:

(4)

Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем

(5)

Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7) заданы? При такой постановке модель носит сугубо дескриптивный характер. Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет. Начиная с этого момента,

, и соответствующую установившуюся скорость
можно найти из условия
=0, решая не дифференциальное, а квадратное уравнение. Имеем

(6)

(второй — отрицательный — корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от

до
. Как и по какому закону – это можно узнать, лишь решив дифференциальное уравнение (7).

Однако даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение. И хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны. Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций – а как найти закон изменения во времени перемещения? Формальный ответ прост: